72. On the Divisor Function and Class Numbers of Real Quadratic Fields. II

By R. A. Mollin
Department of Mathematics and Statistics, University of Calgary
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 9, 1990)

Abstract

The purpose of this paper is to continue work begun in [12] by providing lower bounds for the class numbers of real quadratic fields $\boldsymbol{Q}(\sqrt{d})$ in terms of the divisor function. These results generalize those of Halter-Koch in [5] as well as Azuhata [1]-[2], Mollin [7]-[11], and Yokoi [17][23].

§ 1. Notation and preliminaries. Throughout d is a positive squarefree integer, and $K=\boldsymbol{Q}(\sqrt{d})$, and $h(d)$ is the class number of K. The maximal order in K is denoted \mathcal{O}_{K}, and the discriminant of K is $\Delta=4 d / \sigma^{2}$ where $\sigma=\left\{\begin{array}{l}2 \text { if } d \equiv 1(\bmod 4) \\ 1 \text { if } d \equiv 2,3(\bmod 4)\end{array}\right\}$. Let $w_{a}=(\sigma-1+\sqrt{d}) / \sigma$.

If $[\alpha, \beta]$ is the module $\{\alpha x+\beta y: x, y \in Z\}$ then we observe that the maximal order $\mathcal{O}_{K}=\left[1, w_{d}\right]$. It can be shown (for example see Ince [6, pp. v-vii]) that I is an ideal in \mathcal{O}_{K} if and only if $I=\left[a, b+c w_{a}\right]$ where $a, b, c \in Z$ (the rational integers) with $c|b, c| a$ and $a c \mid N\left(b+c w_{d}\right)$; where N is the norm from K to \boldsymbol{Q}. Moreover if $a>0$ then a is unique and is the smallest positive rational integer in I, denoted $a=L(I)$. Thus $N(I)=c L(I)$. If $c=1$ we say that I is a primitive ideal, and so $N(I)=L(I)$. Since $I=(c)[a / c, b / c+$ w_{d}] then we may restrict our attention to primitive ideals, (where (c) denotes the principal ideal generated by (c)).

A primitive ideal I is called reduced if it does not contain any nonzero element α such that both $|\alpha|<N(I)$ and $|\bar{\alpha}|<N(I)$ where $\bar{\alpha}$ is the algebraic conjugate of α.

Proof of the following facts can be found in [14]-[16].
Theorem 1.1. (a) If I is a reduced ideal then $N(I)<\sqrt{ }$.
(b) If I is a primitive ideal and $N(I)<\sqrt{\triangle} / 2$ then I is reduced.

Let $I=\left[N(I), b+w_{d}\right]$ be primitive then the expansion of $\left(b+w_{d}\right) / N(I)$ as a continued fraction $\left\langle a_{0}, \overline{a_{1}, a_{2}, \cdots, a_{k}}\right\rangle$ of period length k and the sequences of integers $P_{i}, Q_{i}, i \geq 0$ are obtained recursively as follows:

$$
\left(P_{0}, Q_{0}\right)=(\sigma b+\sigma-1, \sigma N(I)), \quad P_{i+1}=a_{i} Q_{i}-P_{i}
$$

where $\left.a_{i}=\mathrm{l}\left(P_{i}+\sqrt{d}\right) / Q_{i}\right\rfloor$ with \lfloor 」 keing the greatest integer function, and $d=P_{i+1}^{2}+Q_{i} Q_{i+1}$.

Let $I=\left[N(I), b+w_{d}\right]$ primitive and reduced. Then the expansion of $\left(b+w_{d}\right) / N(I)$ into a continued fraction yields all of the reduced ideals in \mathcal{O}_{K} equivalent to I; i.e. $I_{1}=\left[Q_{0} / \sigma,\left(P_{0}+\sqrt{d}\right) / \sigma\right]=I \sim I_{2}=\left[Q_{1} / \sigma,\left(P_{1}+\sqrt{\bar{d}}\right) / \sigma\right]$

