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Here we concern mainly with equivalence relations among irreducible
unitary representations (= IURs) of an infinite wreath product group, con-
structed in the first part [1] of these notes. We keep to the notations in [1].

1. Commutativity of two kinds of inducing processes. Let T be a
group and S its subgroup. Consider wreath product groups (R)(S) and
(R)(T). Then we hve two kinds of inducing of representations: the usual
one and the WP-inducing. We give a certain commutativity of these
inducing processes. Start with a datum R={A,p,,a=(a)} for an
elementary representation of p(R) of (S). On the one hand, put tsr=
Ind p, nd let Ind a e V(tr) be the induced vector of a e V(ps). Then
=()e is a reference vector for (V)e with V= V(tr), and denote it as

=Ind a. Thus we get a datum R={A, tr, X, d} for (R)(T) and correspond-
ingly an elementary representation p(R) of (R)(T). On the other hand, we
have the induced representation Iud(p(R) (S) (R),(T)).

Theorem 1. Let R be a datum for an elementary representation of
(S). Then the t’wo representations p(R) and Ind(p(R); (S)(T)) of
(T) are canonically equivalent to each other. A similar assertion holds
for standard representation for (R)(S) and (R)(T).

2. Equivalence relations among standard representations. Take two
induced representations p(Q)=Ind(u(Q);H(Q)$(R)(T)), i=1, 2, o (R)(T),
called standard, and let the corresponding data be

Q={(n, p,, z), (a()), (b)},
Q2= {(Ba, pr2a,a X.)aea, (a2(c]))aea, (b2)ea},

where, in particular, (Ar)rer and (Ba)aea are partitions of A, and T,r and Ta
are subgroups of T. For an element of (R)a, we cal.[ an adjustment of Q
by the datum

Q={((B),,z), (a(a)), (b.)}.
Then p(Q) is equivalent to p(Q) in a trivial ashion.

Theorem 2. Assume that two data Q and Q stisfy the condition (Q1),
i.e., IFI<=I, Izl<=l, and that both p(Q) and p(Q) are irreducible. Then
they are mutually equivalent if and only if the following conditions hold.

(EQU1) Replacing Q by its adjustment by an element in (R) if neces-
sary, we have a 1-1 correspondence of F onto such that A=B(r) for

" e F. Further r=(r) for " e F, and Indrr,p,-Ind2pr for " e F and
=().


