5. Some Aspects in the Theory of Representations of Discrete Groups. II

By Takeshi Hirai
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., Jan. 12, 1990)

Here we concern mainly with equivalence relations among irreducible unitary representations ($=\mathrm{IURs}$) of an infinite wreath product group, constructed in the first part [1] of these notes. We keep to the notations in [1].

1. Commutativity of two kinds of inducing processes. Let T be a group and S its subgroup. Consider wreath product groups $\mathbb{S}_{A}(S)$ and $\mathbb{S}_{A}(T)$. Then we have two kinds of inducing of representations: the usual one and the WP-inducing. We give a certain commutativity of these inducing processes. Start with a datum $R=\left\{A, \rho_{S}, \chi, \alpha=\left(a_{\alpha}\right)_{\alpha \in A}\right\}$ for an elementary representation of $\rho(R)$ of $\mathbb{S}_{A}(S)$. On the one hand, put $\tilde{\rho}_{T}=$ $\operatorname{Ind}_{S}^{T} \rho_{S}$, and let $\tilde{a}_{\alpha}=\operatorname{Ind}_{S}^{T} a_{\alpha} \in V\left(\tilde{\rho}_{T}\right)$ be the induced vector of $a_{\alpha} \in V\left(\rho_{S}\right)$. Then $\tilde{a}=\left(\tilde{a}_{\alpha}\right)_{\alpha \in A}$ is a reference vector for $\left(\tilde{V}_{\alpha}\right)_{\alpha \in A}$ with $\tilde{V}_{\alpha}=V\left(\tilde{\rho}_{T}\right)$, and denote it as $\tilde{a}=\operatorname{Ind}_{S}^{T} a$. Thus we get a datum $\tilde{R}=\left\{A, \tilde{\rho}_{T}, \chi, \tilde{a}\right\}$ for $\mathbb{S}_{A}(T)$ and correspondingly an elementary representation $\rho(\tilde{R})$ of $\mathfrak{S}_{A}(T)$. On the other hand, we have the induced representation $\operatorname{Ind}\left(\rho(R) ; \Im_{A}(S) \uparrow \Im_{A}(T)\right)$.

Theorem 1. Let R be a datum for an elementary representation of $\Im_{A}(S)$. Then the two representations $\rho(\tilde{R})$ and $\operatorname{Ind}\left(\rho(R) ; \widetilde{S}_{A}(S) \uparrow \Im_{A}(T)\right)$ of $\mathfrak{S}_{A}(T)$ are canonically equivalent to each other. A similar assertion holds for standard representation for $\Im_{A}(S)$ and $\varsigma_{A}(T)$.
2. Equivalence relations among standard representations. Take two induced representations $\rho\left(Q_{i}\right)=\operatorname{Ind}\left(\pi\left(Q_{i}\right) ; H\left(Q_{i}\right) \uparrow \varsigma_{A}(T)\right), i=1,2$, of $\varsigma_{A}(T)$, called standard, and let the corresponding data be

$$
\begin{aligned}
& Q_{1}=\left\{\left(A_{\gamma}, \rho_{T_{1 i}}^{\tau}, \chi_{1 \gamma}\right)_{r \in I},\left(a_{1}(\gamma)\right)_{r \in \Gamma},\left(b_{17}\right)_{r \in \Gamma}\right\}, \\
& Q_{2}=\left\{\left(B_{\partial}, \rho_{T_{2 j}}^{\delta}, \chi_{2 \delta}\right)_{\partial \in J},\left(a_{2}(\delta)\right)_{\partial \in J},\left(b_{2 \delta}\right)_{j \in \Lambda}\right\},
\end{aligned}
$$

where, in particular, $\left(A_{\gamma}\right)_{r \in \Gamma}$ and $\left(B_{\delta \delta}\right)_{\delta \in \Delta}$ are partitions of A, and $T_{1 r}$ and $T_{2 \delta}$ are subgroups of T. For an element ζ of \widetilde{S}_{A}, we call an adjustment of Q_{2} by ζ the datum

$$
{ }^{\zeta} Q_{2}=\left\{\left(\zeta\left(B_{\delta}\right), \rho_{T_{2 \delta}}^{\delta}, \chi_{\partial}\right)_{\delta \in \Lambda},\left(a_{2}(\delta)\right)_{\delta \in\lrcorner},\left(b_{2 \delta}\right)_{\partial \in \Delta}\right\} .
$$

Then $\rho\left(Q_{2}\right)$ is equivalent to $\rho\left({ }^{\zeta} Q_{2}\right)$ in a trivial fashion.
Theorem 2. Assume that two data Q_{1} and Q_{2} satisfy the condition ($Q 1$), i.e., $\left|\Gamma_{f}\right| \leqq 1,\left|\Delta_{f}\right| \leqq 1$, and that both $\rho\left(Q_{1}\right)$ and $\rho\left(Q_{2}\right)$ are irreducible. Then they are mutually equivalent if and only if the following conditions hold.
(EQU1) Replacing Q_{2} by its adjustment by an element in \mathbb{S}_{A} if necessary, we have a 1-1 correspondence κ of Γ onto Δ such that $A_{\gamma}=B_{\kappa(r)}$ for $\gamma \in \Gamma$. Further $\chi_{r}=\chi_{\kappa(r)}$ for $\gamma \in \Gamma$, and $\operatorname{Ind}_{T_{1 \gamma}}^{T} \rho_{T_{1 \gamma}}^{\tau} \cong \operatorname{Ind}_{T_{20}}^{T} \rho_{T_{2 \delta}}^{\delta}$ for $\gamma \in \Gamma_{f}$ and $\delta=\kappa(\gamma)$.

