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M. Vowe and H.-J. Seiffert [6] evaluated the sum :
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by identifying it with an Eulerian integral. Subsequently, in our attempt
in [4] to find the sum (1), without considering this Eulerian integral, we
were led naturally to numerous interesting generalizations of (1) obtainable
as useful consequences of Kummer’s summation theorem [3, p. 134, Theorem
3] in the theory of the familiar (Gaussian) hypergeometric series (see [4]
for details). The object of the present note is to derive certain basic (or q-)
extensions of (1) and of its various generalizations given already by us [4].

For real or complex g, |¢|<1, let
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for an arbitrary (real or complex) parameter 1. Then a g-extension of
Kummer’s summation theorem [3, p. 134, Theorem 3], employed in our
earlier work [4], can be written in the form (cf. [1, p. 526, Equation (1.9)]):
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in terms of a basic (or ¢-) hypergeometric ,@, function (cf., e.g., [5, p. 347,
Equation (272)]).
Defining the basic (or ¢-) binomial coefficient by
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it is easily verified that
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and that
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