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O. The purpose of this paper is to show how some information on
prime numbers in very short intervals, of type [x, x+ x] withe0 arbitrary,
may be derived by classical methods o analytic number theory. We have
not attempted in this note to give the sharpest result possible in this
direction. For comparison, the known applications for zero-density results
give

(x+x)-z(x)x/log x (/7/12)
and a corresponding result or almost all intervals for 1/6 (Huxley [1],
[3], p. 19).

1. In this section we derive the main estimate in our work. De-
ductions from it will be given in section 2.

We shall need rom the theory the following known results. We use
the notation p=+ir for the real and imaginary parts of a non-trivial zero
of Riemann zeta-function.
(A) The number of p with T<IrI<T+I is O(logT), where multiplicities
are counted.

This is Theorem 9.2 in Titchmarsh [4].
(B) We have 1-/>>(log)-V(loglog

This is the Vinogradov-Korobov bound ([4], p. 135).
(C) The explicit formula with remainder of prime number theory may be
taken as

Y--(y)-- Y + O(log y+yT-(log T))
Irl<T

provided T, y are greater than 1 and y is bounded by a fixed power of T.
This follows from Theorem 3.8 of Ptterson [2].

Let be fixed with 0<]<1, let X>I and N=X,. DefineNotation.
X1/

Theorem. Suppose N is an integer. Define f(O) to be_
(

_
A(m)--o:-(o: 1))e.

2=

Then f(O) is o(X) (with constant independent of
Remarks. The integrality of N is assumed to simplify the notation;

sums over m in (a-X, a X] may be dealt with in the same way in general.
The proof shows that the bound may be tken as

0(X exp(-A(log X)l/(loglog X)-m)).
We prove first the following


