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In this paper we study the inverse scattering problem for the 1-dimen-
sional SchrSdinger operator

dH(u) u(x), o x oo
dx

by the method of the Darboux transformation. Here we assume that the
potential u(x) belongs to

L, {u real valued, continuous and

for some 0. In this article, we omitted the proof. See [3] and [4] for
details.

1. Jost solutions. Let f(x, $;u) be the solutions of the eigenvalue
problem

H(u)f f + u(x)f
such that f=(x, ;u) behave like e-+* as x-+-+/-c respectively, which are
called the Jost solutions, if they exist. If u(x) e L,o, then f(x, ; u) exist
for $ e R \{0). Moreover, if u(x) e L,, then f(x, ; u) extended analytically
into the complex upper half plane Im $0. More precisely, e*:f+(x, ; u)
--1 belong to the Hardy space H+ of the upper half plane and, therefore,
they admit the integral representation

( 1 ) e-ef+/-(x,; )=1+__ B+/-(x,

In particular, f(z, O; ) are defined. The entries of the S-matrix of /-/()
are represented explicitly in terms of the Jost solutions. For example, we
have

( ) If/(, ), f_(z, +
[f_(, ; ), f/(z, ; )]

where /(; ) and r_(; ) are the right and left reflection coefficients re-
spectively, and If, g]=f’--gf’ is the Wronskian. We refer to [1] for
explicit representations of another entries and further information about
the seattering data.

;2,. Levinson’s theorem. The following, which is called Levinson’s
theorem usually, is well known.

Theorem 1 (cf. [1;p. 208]). A potential u(x) in L1, without bound
states is determined by its right reflection coefficient.


