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1. Introduction and main theorems. In Chapter II of [1] Fefferman
and Phong estimated the eigenvalues of Schrodinger operators — 4+ V(x)
on R" by using the uncertainty principle. Inspirated by their idea, in the
present note we give two L’-estimates for degenerate Schriodinger operators
of higher order, which are a version and an extension of Theorem 4 in
Chapter II of [1]. As an application, we consider the hypoellipticity for
an example of infinitely degenerate elliptic operators.

Consider a symbol of the form

(1) a(z, &)= z 0,@) |+ V(2),  weRr,

where p;, are positive rational numbers, V(x) is a non-negative measurable
function and

a(®)=1,
(2) {
oy (@)= ] |2, [**» for k>2.
j=1
Here «(k, j) are non-negative rational numbers. If (x,, &)< R™ and if 6=
©,, - -+, 0, for §,>0, we denote by B;(x,, &) a box
(3) {(@, &) |@,—x0;|<3,/2, 1&,—&,;|<d;/ 2}

Clearly the volume of B,(x, &) is equal to 1. Let C denote a set of boxes
By(x,, &) for all (z,, &) and all 5. We denote by m, (-) the Lebesgue measure
in B'. We set m,=p,—1if p, is integer and m,=[y,] otherwise. Set m,=
Dk My

Theorem 1. Let a(x, & be the above symbol and let W(x) be a con-
tinuous function in R*. Assume that there exists a constant 1 —2"™<e¢<1
such that for any B=B(x, &) € C
(4) m,, ({(, §) € B; a(x, ) > max W@)h=ec,

where r is ¢ natural projection from R¥. to R? and B** denotes a suitable
dilation of B whose modulus depends only on yu, and x(k, 7). Then for any
compact set K of R there exists a constant ¢, >0 such that
(5) (@, Dyu, w=c (W(@u,w)  for any ue Cy(K),
where (, ) denotes the L* inner product (cf. Theorem B in [5]).

Remark 1. The lower bound of ¢ in (4) is 0 when all p,<1. If all
a,(®)=1 then the constant ¢, in (5) can be taken independent of K. The



