4. Invariant Spherical Distributions of Discrete Series on Real Semisimple Symmetric Spaces G_c/G_R

By Shigeru SANO
Department of Mathematics, Shokugyokunren University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1989)

For real semisimple connected Lie groups G_R , Harish-Chandra discussed in [2] invariant eigendistributions on the groups corresponding to the characters of discrete series. In this paper, we study invariant spherical distributions (=ISD's) of discrete series for the symmetric spaces G_c/G_R and the unitary representations associated to the ISD's, for the complexification G_c of G_R . In [6] and [7, 8], the cases of SL(2,C)/SL(2,R), Sp(2,C)/Sp(2,R) and GL(n,C)/GL(n,R) were treated, where the discrete series appears. In [5] and [9], we discussed general theories for the symmetric spaces G_c/G_R . From these works, we can see that there exists an interesting duality between the series of ISD's on G_c/G_R and those of invariant eigendistributions on G_R in such a way that the discrete series corresponds to the continuous series and vise versa.

§ 1. Invariant spherical distributions of discrete series for G_c/G_R . Assume that G_R has a simply connected complexification G_c . Let σ be an involutive automorphism of G_c such that $(G_c)^\sigma = G_R$, where $(G_c)^\sigma$ is the set of all fixed points of σ in G_c . Put $X = \{g\sigma(g)^{-1} : g \in G_c\}$, then G_c/G_R and X are isomorphic under $G_c/G_R \in gG_R \mapsto g\sigma(g)^{-1} \in X$ as G_c -spaces. Let g_R be the Lie algebra of G_R and g_c its complification.

We assume throughout this paper that the symmetric pair (g_c, g_R) admits a compact Cartan subspace b. In this case, there exists the discrete series for X. Any root of (g_c, b_c) is singular imaginary with respect to g_R (cf. [10, p. 509]). Let $a_1 = \mathfrak{b}, a_2, \dots, a_n$ be a maximal set of Cartan subspaces of (g_c, g_R) , not G_R -conjugate each other. Recall that $X \subset G_c$ and put $A_i = Z_X(\alpha_i)$ and $W^i = N_{G_R}(A_i)/Z_{G_R}(A_i)$ for $1 \le i \le n$. Consider the polynomial in t: $\det((1+t)\operatorname{Id-Ad}(x)) = \sum_{i=0}^{m} t^{i}D_{i}(x)$, $m = \dim \mathfrak{g}_{c}$. Let l be the smallest integer such that $D_{\iota}(x) \not\equiv 0$. The set X' of regular elements in X is an open dense subset of X and $X' = \bigcup_{i=1}^n G_R[A'_i]$ with $A'_i = A_i \cap X$ and $G_R[A'_i] =$ $\bigcup_{g \in G_R} gA_i'g^{-1}$. Since a_1 is compact, the subspace A_1 of X is an abelian connected group. Let A_1^* be the unitary character group of A_1 , then it can be identified with a lattice F in the dual space of $\sqrt{-1}\mathfrak{b}$: for $\lambda \in F$, there exists a unique element a^* of A_1^* such that $\langle a^*, \exp H \rangle = e^{\lambda(H)}$ $(H \in \mathfrak{h})$. Let W be the Weyl group of (g_c, b_c) . For any $w \in W$, there exists an element $\underline{w} \in W^1$ such that $e^{w\lambda(H)} = \langle a^*, \underline{w}(\exp H) \rangle$ for $H \in \mathfrak{b}$. An element $\lambda \in F$ is called regular if $w\lambda \neq \lambda$ for any $w \in W$, $\neq 1$, and the set of all regular elements of F will be denoted by F'. Denote by D(X) the algebra of G_c -