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The purpose of this note is to present some results on the orbit struc-
ture of a compact (=formally real) simple Jordan algebras under the action
of the identity component of its structure group. In view of the classifi-
cation of compact simple Jordan algebras, Theorem 1 is viewed as a natural
generalization of the Sylvester’s law of inertia for real symmetric or com-
plex Hermitian matrices. We shall use terminologies and well-known facts
in the theory of Jordan algebras without giving explanations (see, for
instance, Jacobson [2] and Braun-Koecher [1]).

1. Let U be a compact simple Jordan algebra of degree r, and let
G be the structure group of . Let G°() denote the identity component
of G(). Letac and let
(1) MmD=—o @V "'+ - +(—1)0,(a)
be the generic minimum polynomial of a (for details, see [2]). Note that
each g,(a) is a homogeneous polynomial of degree ¢ in the components of a.
If we denote the minimum polynomial of the element a by yx,(2), then each
irreducible factor of m,(2) is a factor of x,(2) ([2]). The polynomial equa-
tion ,(2)=0 has only real roots, since % is compact ([1]). Therefore the
equation m,(2)=0 also has only real roots. By the signature of an element
a € U (denoted by sgn (a)), we mean the pair of the integers (p, q) such that
p and q are numbers of positive and negative roots of the equation m,(2)
=0, respectively. Here the number of a root should be counted by includ-
ing its multiplicity. Let %, , denote the set of elements a ¢ A with sgn (a)
=(p,q). Then we have

(2) 2[=p+]éj<72ip,q.
Now let e be the unit element of A. Since A is of degree 7, one can choose
a system of primitive orthogonal idempotents {e,, - - -, e,} of & such that

> .e,—e. Such systems are conjugate to each other under the auto-
morphism group Aut % of A. We choose and fix such a system {e,, - --, ¢,}
and put
» D+a
(3) Opvq=zlzei—jzlej’ D, Q>0y p+ae<r;
i= =p+
here we are adopting the convention that the first and the second terms
of the right hand side of (3) should be zero, provided that p=0 and ¢=0,
respectively.
Theorem 1. Let A be a compact simple Jordan algebra of degree r.
Then the decomposition (2) is the G* ()-orbit decomposition of A. More



