18. On the Existence of Periodic Solutions for Periodic Quasilinear Ordinary Differential Systems

By Seiji Saito and Minoru Yamamoto
Department of Applied Physics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1987)

1. Introduction. In this paper we deal with the problem of the existence of T-periodic solutions for the T-periodic quasilinear ordinary differential system

$$
\begin{equation*}
x^{\prime}=A(t, x) x+F(t, x) \tag{1}
\end{equation*}
$$

where $A(t, x)$ is a real $n \times n$ matrix continuous in (t, x) and T-periodic in t, and $F(t, x)$ is an \boldsymbol{R}^{n}-valued function continuous in (t, x) and T-periodic in t. We consider the associated linear system

$$
\begin{equation*}
x^{\prime}=B(t) x \tag{2}
\end{equation*}
$$

where $B(t)$ is a real $n \times n$ matrix continuous and T-periodic in t.
Hypothesis \boldsymbol{H}. There exist no T-periodic solutions of (2) except for the zero solution.

In [1], A. Lasota and Z. Opial discussed the same problem under some hypothesis corresponding to \boldsymbol{H} : for each continuous and T-periodic function $y(\cdot), A(\cdot, y(\cdot)) \in M^{*}$, where M^{*} is a compact subset of continuous and T-periodic matrices whose systems satisfy Hypothesis \boldsymbol{H}. They required that $F(t, x)$ satisfy the following :

$$
\liminf _{c \rightarrow \infty} \frac{1}{c} \int_{0}^{T} \sup _{\|x\| \leqq c}\|F(t, x)\| d t=0
$$

In [2], A. G. Kartsatos considered the existence of T-periodic solutions of (1) under the conditions that $A(t, x)$ is "sufficiently close" to $B(t)$, the system (2) of which satisfies Hypothesis \boldsymbol{H} and that $F(t, x)$ does not depend on x.

In Main Theorem we give an explicit extent that shows how $A(t, x)$ in (1) is close to $B(t)$ in (2) and we obtain certain conditions of $F(t, x)$ which are weaker than those of [1], [2], respectively.
2. Preliminaries. The symbol $\|\cdot\|$ will denote a norm in \boldsymbol{R}^{n} and the corresponding norm for $n \times n$ matrices. Let C_{T} be the space of \boldsymbol{R}^{n}-valued functions continuous in \boldsymbol{R}^{1} and T-periodic with the supremum norm. Let $C[0, T]$ be the space of \boldsymbol{R}^{n}-valued functions continuous on [$\left.0, T\right]$ with the supremum norm. Let $M[0, T]$ be the space of real $n \times n$ matrices continuous on $[0, T]$ with the supremum norm

$$
\|A\|_{\infty}=\sup \{\|A(t)\| ; t \in[0, T]\} .
$$

We define a bounded linear operator $U: C[0, T] \rightarrow \boldsymbol{R}^{n}$ by $U(x(\cdot))=x(0)$ $-x(T)$ with the norm

$$
\|U\|=\sup \left\{\|U(x(\cdot))\| ;\|x\|_{\infty}=1\right\}
$$

