51. The Steffensen Iteration Method for Systems of Nonlinear Equations. II

By Tatsuo Noda
Department of Applied Mathematics, Toyama Prefectural College of Technology
(Communicated by Kôsaku Yosida, m. J. A., June 9, 1987)

1. Introduction. In generalizing the Aitken δ^{2}-process in one dimension to the case of n-dimensions, Henrici [1, p. 116] has considered a formula, which is called the Aitken-Steffensen formula. In [2], we have studied the above Aitken-Steffensen formula for systems of nonlinear equations and shown [2, Theorem 2]. Moreover, in [3], we have considered a method of iteration for the above systems, which is often called the Steffensen iteration method, and shown [3, Theorem 1]. [3, Theorem 1] improves the result of [2, Theorem 2].

We have given the proof of [3, Theorem 1], in which the Sherman-Morrison-Woodbury formula [3, Lemma 4] is used only to determine $\left(\Delta^{2} X\left(x^{(k)}\right)\right)^{-1}$, but in this paper we show that the proof can be simplified without using the formula. And we also present a numerical example in order to show the efficiency of the Steffensen iteration method.
2. Statement of results. Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a vector in R^{n} and D a region contained in R^{n}. Let $f_{i}(x)(1 \leqq i \leqq n)$ be real-valued nonlinear functions defined on D and $f(x)=\left(f_{1}(x), f_{2}(x), \cdots, f_{n}(x)\right)$ an n-dimensional vector-valued function. Then we shall consider a system of nonlinear equations
(2.1)

$$
x=f(x)
$$

whose solution is \bar{x}. Let $\|x\|$ and $\|A\|$ be denoted by

$$
\|x\|=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad\|A\|=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

where $A=\left(a_{i j}\right)$ is an $n \times n$ matrix. Define $f^{(i)}(x) \in R^{n}(i=0,1,2, \ldots)$ by

$$
\begin{aligned}
& f^{(0)}(x)=x \\
& f^{(i)}(x)=f\left(f^{(i-1)}(x)\right) \quad(i=1,2, \cdots) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& d^{(0, k)}=x^{(k)}-\bar{x}, \\
& d^{(i, k)}=f^{(i)}\left(x^{(k)}\right)-\bar{x} \quad \text { for } i=1,2, \cdots,
\end{aligned}
$$

and then define an $n \times n$ matrix $D\left(x^{(k)}\right)$ by

$$
D\left(x^{(k)}\right)=\left(d^{(0, k)}, d^{(1, k)}, \cdots, d^{(n-1, k)}\right)
$$

Throughout this paper, we shall assume the following five conditions (A.1)-(A.5) which are the same as those of [3].
(A.1) $f_{i}(x)(1 \leqq i \leqq n)$ are two times continuously differentiable on D.
(A.2) There exists a point $\bar{x} \in D$ satisfying (2.1).
(A.3) $\|J(\bar{x})\|<1$, where $J(x)=\left(\partial f_{i}(x) / \partial x_{j}\right)(1 \leqq i, j \leqq n)$.

