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This paper continues the work begun in [6]. Therein we gave criteria
for real quadratic fields of narrow Richaud-Degert (R-D) type to have class
number one. This was a consequence of more general criteria given for
real quadratic fields Q(/-) with nl (mod 4).

Herein we will deal with positive square-free integers n of wide (R-D)
type i.e., n--m+r where r divides 4m and r e (-m, m] with Irl=l, 4. The
first result generalizes results in [1], [3], [4], [9] and [11].

Theorem 1. Let n=12-r7 be of wide R-D type such that nl (mod
4). If h(n)--1 then"

(1) Irl-=2.
(2) p is inert in Q(/-) for all odd primes p dividing 1.
(3) If r--2 then 1-----O (mod 3).
(4) If r 2 then O (mod 3).
Proof. Since nl (mod 4) then 2 is ramified in Q(/-). Therefore,

there are integers x and y such that x-ny-- _+2. By [5, Theorem 1.1]
2lrl; where [rl--2 since Ir[=/=l by hypothesis. This secures (1). If p is an
odd prime dividing such that p is not inert in Q(/-) then there are
integers u and v such that u--nv-- +_p. By [5, Theorem 1.2] n-7 and
p=3 are forced. This secures (2).

If 3 is not inert in Q(/-) then x-ny-- +_ 3 for some integers x and y.
Assume that x0 and that y0 is the least positive solution. Thus we
may invoke [7, Theorem 108-108a, pp. 205-207] to get that if x--ny--3
then for xl-- (2/2+ r)/I r and Yl-- 21/lrl (see [2] and [8])"

(i) O/y_yI/-//(X;-I)
and if x-ny 3 then"

(ii)
A tedious check shows that y-1.
Therefore x--n _+_3 i.e., x--l--r +__ 3. An easy check shows that the

only possible solutions to the latter equation occur when either l--r-2 or
1----3, and r-------2. Thus, if n6 when r=2, and n7 when r---2 then 3
is inert in Q(/) whence n=_2 (mod 3). Therefore, 1--0 (mod 3) if r=2,
and l0 (mod 3) if r---2. This secures (3), (4) and the theorem. Q.E.D.

Remark 1. The converse of Theorem 1 is false. For example, if
n 12 +2-- 146 then Theorem 1 (1)-(3) are satisfied, but h(n)-- 2.


