44. Class Number One Criteria for Real Quadratic Fields. II

By R. A. Mollin
Mathematics Department, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

(Communicated by Shokichi Iyanaga, m. J. A., May 12, 1987)

This paper continues the work begun in [6]. Therein we gave criteria for real quadratic fields of narrow Richaud-Degert (R-D) type to have class number one. This was a consequence of more general criteria given for real quadratic fields $Q(\sqrt{n})$ with $n \equiv 1(\bmod 4)$.

Herein we will deal with positive square-free integers n of wide (R-D) type; i.e., $n=m^{2}+r$ where r divides $4 m$ and $r \in(-m, m]$ with $|r| \neq 1,4$. The first result generalizes results in [1], [3], [4], [9] and [11].

Theorem 1. Let $n=l^{2}+r>7$ be of wide $R-D$ type such that $n \not \equiv 1(\bmod$ 4). If $h(n)=1$ then:
(1) $|r|=2$.
(2) p is inert in $Q(\sqrt{ } \bar{n})$ for all odd primes p dividing l.
(3) If $r=2$ then $l \equiv 0(\bmod 3)$.
(4) If $r=-2$ then $l \not \equiv 0(\bmod 3)$.

Proof. Since $n \not \equiv 1(\bmod 4)$ then 2 is ramified in $Q(\sqrt{n})$. Therefore, there are integers x and y such that $x^{2}-n y^{2}= \pm 2$. By [5, Theorem 1.1] $2 \geq|r|$; where $|r|=2$ since $|r| \neq 1$ by hypothesis. This secures (1). If p is an odd prime dividing l such that p is not inert in $Q(\sqrt{n})$ then there are integers u and v such that $u^{2}-n v^{2}= \pm p$. By [5, Theorem 1.2] $n=7$ and $p=3$ are forced. This secures (2).

If 3 is not inert in $Q(\sqrt{n})$ then $x^{2}-n y^{2}= \pm 3$ for some integers x and y. Assume that $x>0$ and that $y>0$ is the least positive solution. Thus we may invoke [7, Theorem 108-108a, pp. 205-207] to get that if $x^{2}-n y^{2}=3$ then; for $x_{1}=\left(2 l^{2}+r\right) /|r|$ and $y_{1}=2 l /|r|$ (see [2] and [8]):
(i) $0 \leq y \leq y_{1} \sqrt{3} / \sqrt{2\left(x_{1}+1\right)}$
and if $x^{2}-n y^{2}=-3$ then :
(ii) $0<y \leq y_{1} \sqrt{3} / \sqrt{2\left(x_{1}-1\right)}$.

A tedious check shows that $y=1$.
Therefore $x^{2}-n= \pm 3$; i.e., $x^{2}-l^{2}=r \pm 3$. An easy check shows that the only possible solutions to the latter equation occur when either $l=r=2$ or $l=3$, and $r=-2$. Thus, if $n>6$ when $r=2$, and $n>7$ when $r=-2$ then 3 is inert in $Q(\sqrt{n})$; whence $n \equiv 2(\bmod 3)$. Therefore, $l \equiv 0(\bmod 3)$ if $r=2$, and $l \equiv 0(\bmod 3)$ if $r=-2$. This secures (3), (4) and the theorem. Q.E.D.

Remark 1. The converse of Theorem 1 is false. For example, if $n=12^{2}+2=146$ then Theorem 1 (1)-(3) are satisfied, but $h(n)=2$.

