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Let o_>_0 and let m, n be nonnegative integers. Disk polynomials
R() are defined in terms of Jacobi polynomials by

[R(’-)(2r--l)e(-)r if m>_n,
R (z)=’ [R,-)(2r-l)e*(-)r if m<n,

where z=re and R’)(x) is the Jacobi polynomial of degree n and of
.order (a, fl) normalized so that R"’)(1)=1. If a=q--2, q=2, 3, 4, ...,
then disk polynomials are the spherical functions on the sphere
S=-1 considered as the homogeneous space U(q)/U(q-1). Let D and
D be the open unit disk a.nd the closed unit disk in the complex plane.,
respectively. Denote by A<") the space of absolutely convergent disk
polynomial series on D, that is, the space of functions f on D such that

y(z) ,=0 a,nR"(z) with a.,{ <,
and introduce a norm to A(") by ]lf]=ia.,I.

The purpose of this note is to study the structure of the space
A<). Details will be published elsewhere.

1. Firstly we mention some properties of R"
(i) R"(z) is a polynomial of degree m+n in x and y where

z=x+iy.

(ii) R("),. (z)R?() dm,(z) h()-.,,.
where dm,(z)=(a!) (1--x--y) dxdy, h"= (m+n+a+l)F(m+a

+I)F(n+a+I){(a+I)F(a+I)=F(m+I)F(n+I)}-, =x--iy and is
Kronecker’s ,.

(iii) [R"(z)ll on D ([7; (5.1)]).
(iv) R(z)R()r=.q ,) <)

,t, c, (m, n" k, 1)h"qR,q(z)
with c,(m, n k, 1)O ([8; Corollary 5.2]).

Disk polynomials are studied by several authors and we cite here
only T. H. Koornwinder [7].

The space A( consists of continuous functions on D since if
]a,l < then the series a,nR(z) converges uniformly on D by
(iii). Let be the Banach space of absolutely convergent double
sequences b={b,},:0 with norm ilbil=]b,i. Then A is a


