91. On the Algebra of Absolutely Convergent Disk Polynomial Series

By Yûichi KANJIN Department of Mathematics, College of Liberal Arts, Kanazawa University

(Communicated by Kôsaku YOSIDA, M. J. A., Nov. 12, 1984)

Let $\alpha \geq 0$ and let *m*, *n* be nonnegative integers. Disk polynomials $R_{m,n}^{(\alpha)}$ are defined in terms of Jacobi polynomials by

$$R_{m,n}^{(\alpha)}(z) = \begin{cases} R_n^{(\alpha,m-n)}(2r^2-1) e^{i(m-n)\theta} r^{m-n} & \text{if } m \ge n, \\ R_m^{(\alpha,n-m)}(2r^2-1) e^{i(m-n)\theta} r^{n-m} & \text{if } m < n, \end{cases}$$

where $z = re^{i\theta}$ and $R_n^{(\alpha,\beta)}(x)$ is the Jacobi polynomial of degree n and of order (α, β) normalized so that $R_n^{(\alpha,\beta)}(1)=1$. If $\alpha=q-2, q=2,3,4,\cdots$, then disk polynomials are the spherical functions on the sphere S^{2q-1} considered as the homogeneous space U(q)/U(q-1). Let D and \overline{D} be the open unit disk and the closed unit disk in the complex plane, respectively. Denote by $A^{(\alpha)}$ the space of absolutely convergent disk polynomial series on \overline{D} , that is, the space of functions f on \overline{D} such that

 $f(z) = \sum_{m,n=0}^{\infty} a_{m,n} R_{m,n}^{(\alpha)}(z) \quad \text{with} \quad \sum_{m,n} |a_{m,n}| < \infty,$ and introduce a norm to $A^{(\alpha)}$ by $||f|| = \sum_{m,n} |a_{m,n}|$.

The purpose of this note is to study the structure of the space $A^{(\alpha)}$. Details will be published elsewhere.

1. Firstly we mention some properties of $R_{m,n}^{(\alpha)}$:

(i) $R_{m,n}^{(\alpha)}(z)$ is a polynomial of degree m+n in x and y where z=x+iy.

(ii)
$$\int_{\bar{D}} R_{m,n}^{(\alpha)}(z) R_{k,l}^{(\alpha)}(\bar{z}) dm_{\alpha}(z) = h_{m,n}^{(\alpha)-1} \delta_{mk} \delta_{nl},$$

where $dm_{\alpha}(z) = \left(\frac{\alpha+1}{\pi}\right) (1-x^2-y^2)^{\alpha} dx dy$, $h_{m,n}^{(\alpha)} = (m+n+\alpha+1)\Gamma(m+\alpha+1)\Gamma(m+\alpha+1)\Gamma(m+1)^2\Gamma(m+1)\Gamma(n+1)$, $\bar{z}=x-iy$ and δ_{mk} is Kronecker's δ .

(iii) $|R_{m,n}^{(\alpha)}(z)| \leq 1$ on \overline{D} ([7; (5.1)]).

(iv) $R_{m,n}^{(\alpha)}(z)R_{k,l}^{(\alpha)}(z) = \sum_{p,q} c_{p,q}(m, n; k, l)h_{p,q}^{(\alpha)}R_{p,q}^{(\alpha)}(z)$

with $c_{p,q}(m, n; k, l) \ge 0$ ([8; Corollary 5.2]).

Disk polynomials are studied by several authors and we cite here only T. H. Koornwinder [7].

The space $A^{(\alpha)}$ consists of continuous functions on \overline{D} since if $\sum |a_{m,n}| < \infty$ then the series $\sum a_{m,n} R_{m,n}^{(\alpha)}(z)$ converges uniformly on \overline{D} by (iii). Let l^{1} be the Banach space of absolutely convergent double sequences $b = \{b_{m,n}\}_{m,n=0}^{\infty}$ with norm $||b|| = \sum |b_{m,n}|$. Then $A^{(\alpha)}$ is a