29. A Note on the Fundamental Group of a Unirational Variety

By Noriyuki SUWA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko Kodaira, M. J. A., March 12, 1983)

- 1. Introduction. Let k be an algebraically closed field and let X be a smooth projective variety over k. X is unirational (or separably unirational) if there is a dominant rational map $P \rightarrow X$ where P is a projective space such that the extension of fields k(P)/k(X) is finite (or finite separable). Serre showed in [5] the following results.
- (1) An étale covering of a unirational (or separably unirational) variety is also unirational (or separably unirational).
 - (2) The fundamental group of a unirational variety is finite.
- (3) If k is of characteristic 0, every unirational variety is simply connected.

Further the following facts are known about the fundamental variety in the case of characteristic p>0.

- (4) If X is separably unirational and of dimension 3, then X is simply connected (Nygaard [4]).
- (5) If X is unirational and of dimension ≤ 3 , $\pi_1(X)$ is p-torsion-free (Katsura [3]*), Crew [1]).
- (6) The order of the fundamental groups of unirational surfaces are not bounded (Shioda [6], remark 7).

In this note we will show the following:

Theorem. Let k be an algebraically closed field of characteristic p>0 and X a separably unirational variety over k. Then the fundamental group $\pi_1(X)$ of X is p-torsion-free.

2. Proof of the theorem. The proof is based on the theory of de Rham-Witt complex of Deligne-Illusie [2] and a recent result of Crew [1]. We follow the notation of [2].

Proof. Since X is separably unirational, we have

$$H^0(X, \Omega_X^i) = 0$$
 for $i > 0$.

Now the isomorphism

$$W. \Omega_X^i/VW. \Omega_X^i \xrightarrow{\sim} Z. \Omega_X^i$$

induces the isomorphism

$$H^{\scriptscriptstyle 0}(X,W\Omega_{\scriptscriptstyle X}^{\scriptscriptstyle i}/VW\Omega_{\scriptscriptstyle X}^{\scriptscriptstyle i}) {\stackrel{\sim}{\longrightarrow}} {\underset{\scriptscriptstyle C}{\varprojlim}} H^{\scriptscriptstyle 0}(X,Z_{\scriptscriptstyle n}\Omega_{\scriptscriptstyle X}^{\scriptscriptstyle i})$$

^{*} Katsura has communicated to me orally that the method in [3] is also valid for unirational three-folds.