20. On Certain Cubic Fields. I

By Mutsuo Watabe
Department of Mathematics, Keio University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1983)

1. We shall use the following notations: For an algebraic number field F, the ring of integers, the group of units, the group of units with norm 1 and the discriminant of F by $\mathcal{O}_{F}, E_{F}, E_{F}^{+}$, and D_{F} respectively. The discriminant of an algebraic number θ will be denoted by $D(\theta)$ and the discriminant of a polynomial $f(x) \in Z[x]$ by D_{f}.

Now let K / \boldsymbol{Q} be totally real and cubic. For $\alpha \in K, \alpha^{\prime}, \alpha^{\prime \prime}$ will denote the conjugates of α. We define after [3] the function S from K^{\times}to \boldsymbol{R} by

$$
S(\alpha)=\frac{1}{2}\left\{\left(\alpha-\alpha^{\prime}\right)^{2}+\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)^{2}+\left(\alpha^{\prime \prime}-\alpha\right)^{2}\right\} .
$$

Let $1, \xi, \eta$ be a Z basis of \mathcal{O}_{K}. For $\alpha=x+y \xi+z \eta \in \mathcal{O}_{K}, x, y, z \in Z, S(\alpha)$ is a positive definite quadratic form in y, z, so that $S(\alpha)$ has a minimal value on E_{K}.

Let us denote $\mathcal{A}(K)=\left\{\varepsilon \in E_{K}^{+} \mid \varepsilon \neq 1, S(\varepsilon)\right.$ is minimum $\}$ and $\mathscr{B}_{\varepsilon_{1}}(K)$ $=\left(E_{K}^{+} \backslash\left\{\varepsilon_{1}^{n} ; n \in Z\right\}\right) \cap \mathcal{A}(K)$ for $\varepsilon_{1} \in \mathcal{A}(K)$.

In [5], H. J. Godwin announced the following conjecture :
Conjecture. If $\varepsilon_{1} \in \mathcal{A}(K), \varepsilon_{2} \in \mathscr{B}_{\varepsilon_{1}}(K)$ and $S\left(\varepsilon_{1}\right)>9$, then $\varepsilon_{1}, \varepsilon_{2}$ generate $E_{K}^{+}: E_{K}^{+}=\left\langle\varepsilon_{1}, \varepsilon_{2}\right\rangle$.

The purpose of this note is to show that this conjecture holds in certain cases. We shall prove :

Theorem. Let $K=\boldsymbol{Q}(\theta), \operatorname{Irr}(\theta: \boldsymbol{Q})=f(x)=x^{3}-m x^{2}-(m+3) x-1$, $m \in Z$, with square free $m^{2}+3 m+9$. Then we have $\theta \in \mathcal{A}(K),-1-\theta$ $\in \mathscr{G}_{\theta}(K)$ and $E_{K}^{+}=\langle\theta,-1-\theta\rangle$.

Remark 1. It is easy to see that $f(x)$ is irreducible, so that K / \boldsymbol{Q} is cubic. It is cyclic and consequently totally real, because $\sqrt{D_{f}} \in \boldsymbol{Z}$. It is also easy to see that we can limit our consideration to the case $m \geqq-1$. This will be supposed throughout in the sequel.

Remark 2. This kind of fields has been considered by K. Uchida [8], E. Thomas [7] and M.-N. Gras [4].
2. The following propositions will be utilized for the proof of Theorem.

Proposition 1 (H. Brunotte and F. Halter-Koch [1]). Let ε_{1} $\in \mathcal{A}(K), \varepsilon_{2} \in \mathscr{B}_{s_{1}}(K)$, then $\left(E_{K}^{+}:\left\langle\varepsilon_{1}, \varepsilon_{2}\right\rangle\right) \leqq 4$.

Proposition 2 (E. H. Grossman [6], M. Watabe [9]). Suppose K / \boldsymbol{Q} to be totally real, $l \in Z, l \geqq 2, \delta \in E_{K}$. Then the only possible

