20. On Certain Cubic Fields. I

By Mutsuo WATABE

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1983)

1. We shall use the following notations: For an algebraic number field F, the ring of integers, the group of units, the group of units with norm 1 and the discriminant of F by \mathcal{O}_F , E_F , E_F^+ , and D_F respectively. The discriminant of an algebraic number θ will be denoted by $D(\theta)$ and the discriminant of a polynomial $f(x) \in \mathbb{Z}[x]$ by D_f .

Now let K/Q be totally real and cubic. For $\alpha \in K$, α' , α'' will denote the conjugates of α . We define after [3] the function S from K^{\times} to R by

$$S(\alpha) = \frac{1}{2} \{ (\alpha - \alpha')^2 + (\alpha' - \alpha'')^2 + (\alpha'' - \alpha)^2 \}.$$

Let $1, \xi, \eta$ be a Z basis of \mathcal{O}_K . For $\alpha = x + y\xi + z\eta \in \mathcal{O}_K$, $x, y, z \in Z$, $S(\alpha)$ is a positive definite quadratic form in y, z, so that $S(\alpha)$ has a minimal value on E_K .

Let us denote $\mathcal{A}(K) = \{ \varepsilon \in E_K^+ | \varepsilon \neq 1, S(\varepsilon) \text{ is minimum} \}$ and $\mathcal{B}_{\varepsilon_1}(K) = (E_K^+ \setminus \{\varepsilon_1^n; n \in \mathbb{Z}\}) \cap \mathcal{A}(K) \text{ for } \varepsilon_1 \in \mathcal{A}(K).$

In [5], H. J. Godwin announced the following conjecture:

Conjecture. If $\varepsilon_1 \in \mathcal{A}(K)$, $\varepsilon_2 \in \mathcal{B}_{s_1}(K)$ and $S(\varepsilon_1) > 9$, then ε_1 , ε_2 generate $E_K^+ : E_K^+ = \langle \varepsilon_1, \varepsilon_2 \rangle$.

The purpose of this note is to show that this conjecture holds in certain cases. We shall prove:

Theorem. Let $K = \mathbf{Q}(\theta)$, $Irr(\theta : \mathbf{Q}) = f(x) = x^3 - mx^2 - (m+3)x - 1$, $m \in \mathbf{Z}$, with square free $m^2 + 3m + 9$. Then we have $\theta \in \mathcal{A}(K)$, $-1 - \theta \in \mathcal{B}_{\theta}(K)$ and $E_K^+ = \langle \theta, -1 - \theta \rangle$.

Remark 1. It is easy to see that f(x) is irreducible, so that K/Q is cubic. It is cyclic and consequently totally real, because $\sqrt{D_f} \in \mathbb{Z}$. It is also easy to see that we can limit our consideration to the case $m \ge -1$. This will be supposed throughout in the sequel.

Remark 2. This kind of fields has been considered by K. Uchida [8], E. Thomas [7] and M.-N. Gras [4].

2. The following propositions will be utilized for the proof of Theorem.

Proposition 1 (H. Brunotte and F. Halter-Koch [1]). Let $\varepsilon_i \in \mathcal{A}(K)$, $\varepsilon_2 \in \mathcal{B}_{i,i}(K)$, then $(E_K^+: \langle \varepsilon_1, \varepsilon_2 \rangle) \leq 4$.

Proposition 2 (E. H. Grossman [6], M. Watabe [9]). Suppose K/Q to be totally real, $l \in \mathbb{Z}$, $l \geq 2$, $\delta \in E_K$. Then the only possible