138. Deformations of Complements of Lines in \mathbf{P}^{2}

By Hironobu Maeda
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1983)

§1. Introduction. In this paper we shall study deformations of complements of lines in \boldsymbol{P}^{2}, based on the theory of logarithmic deformation introduced by Kawamata ([2]). The result is that the standard completion (see below) of complements of lines in \boldsymbol{P}^{2} has smooth versal family of logarithmic deformations. This provides examples of surfaces of logarithmic general type with unobstructed deformations even though $H^{2}(X, \Theta(\log D)) \neq 0$.

Let $\Delta_{1}, \cdots, \Delta_{n}$ be projective lines on a complex projective plane \boldsymbol{P}^{2}, where $\Delta_{i} \neq \Delta_{j}$ for $i \neq j$, and let $\Delta=\bigcup_{i} \Delta_{i}$. We call $P \in \Delta$ a higher multiple point of Δ, if the multiplicity of Δ at P is greater than two. Let P_{1}, \cdots, P_{s} be all the higher multiple points of Δ with respective multiplicities ν_{1}, \cdots, ν_{s}. Let μ_{1}, \cdots, μ_{n} be the numbers of higher multiple points lying over $\Delta_{1}, \cdots, \Delta_{n}$, respectively. Blowing up \boldsymbol{P}^{2} with center at $C=P_{1}+\cdots+P_{s}$, we obtain a complete non-singular surface X and a birational morphism $\mu: X \rightarrow \boldsymbol{P}^{2}$. Let $E_{j}=\mu^{-1}\left(P_{j}\right), \Delta^{*}$ the proper transform of Δ and D the set-theoretical inverse image of Δ, i.e. D $=\mu^{-1}(\Delta)=\Delta^{*}+\Sigma_{j} E_{j}$. Then D is a divisor on X with normal crossings. The non-singular triple ($X \backslash D, X, D$) is called the standard completion of $P^{2} \backslash \Delta$ (cf. [1, p. 4]) and can be used as a substitute for the complement of lines Δ in \boldsymbol{P}^{2}.

For the definition of the family of logarithmic deformations of non-singular triple, we refer to [2].

Then we have the following
Theorem. (1) For any choice of Δ, the non-singular triple ξ $=(X \backslash D, X, D)$ has no obstruction to logarithmic deformations.
(2) The numbers $h^{i}=\operatorname{dim} H^{i}(X, \Theta(\log D))$ are computed and classified according to the type (cf. [1, Table]) of Δ as following Table I.
(3) If Δ corresponds to the configurations of Pappus or Desargues (Fig. 1), then we get examples with $H^{2}(X, \Theta(\log D)) \neq 0$.
(4) There exists an infinite series of 4 's of type III with $H^{1}(X, \Theta(\log D))=0$.

In this paper we outline a proof of (1). For the details we refer to [3].
§2. Unobstructedness of $(\boldsymbol{X} \backslash \boldsymbol{D}, \boldsymbol{X}, \boldsymbol{D})$. Let $(\hat{\mathscr{X}} \backslash \hat{\mathscr{D}}, \hat{X}, \hat{\mathscr{D}}, \hat{\pi}, \hat{B})$ be the versal family of logarithmic deformations of $(X \backslash D, X, D)$ con-

