79. On q-Additive Functions. I

By J.-L. MAUCLAIRE^{*)} and Leo MURATA^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., June 14, 1983)

1. Let q be an arbitrary fixed natural number ≥ 2 . Then a natural number n can be written in the unique way:

$$n = \sum_{k=0}^{\infty} a_k(n)q^k$$
, $0 \leq a_k(n) \leq q-1$ (q-adic expansion of n).

We say that an arithmetic function g(n) is *q*-additive, if

(1)
$$g(0)=0 \text{ and } g(n)=\sum_{k=0}^{\infty} g(a_k(n)q^k)$$

whenever $n = \sum_{k=0}^{\infty} a_k(n)q^k$ (cf. Gelfond [1]).***) The function "Sum of digits" $S_q(n)$ defined by $S_q(n) = \sum_{k=0}^{\infty} a_k(n)$, is a typical example of a q-additive function.

Let [x] denote the integral part of x, and $\zeta(s, r/q)$, $1 \leq r \leq q$ the Hurwitz zeta function defined by $\zeta(s, r/q) = \sum_{m=0}^{\infty} (m+r/q)^{-s}$ for Re(s) >1. We put

$$\mathcal{A} = \left\{ g(n) : q \text{-additive function such that} \\ \text{the convergence abscissa of } \int_{1}^{\infty} g([t])t^{-s-1}dt < \infty \right\}$$

 $\mathcal{B} = \{H(z) : \text{Taylor series in } z \text{ with positive radius} \\ \text{of convergence} \}$

In this article we give a result concerning a relation between \mathcal{A} and \mathcal{B} . Our theorem is:

Theorem. For q given functions $H_r(z) \in \mathcal{B}$, $1 \leq r \leq q$, there exist a unique $g(n) \in \mathcal{A}$ and a unique $H(z) \in \mathcal{B}$ such that

(2)
$$\sum_{r=1}^{q} H_r(q^{-s}) \zeta\left(s, \frac{r}{q}\right) = s \cdot q^s \cdot \int_1^\infty g([t]) t^{-s-1} dt + q^{s-1} H(q^{-s}) \zeta(s).$$

Conversely, for a given $g(n) \in \mathcal{A}$ and an $H(z) \in \mathcal{B}$, there exists a unique system $H_r(z) \in \mathcal{B}$, $1 \leq r \leq q$, which satisfies (2).

We intend to give, as an application of this result, an explicit summation formula $\sum_{n \le x} g(n)$ for some q-additive functions, in a subsequent article.

2. The following lemma plays an important part in the proof of our Theorem.

^{*)} C.N.R.S. and Waseda University.

^{**)} Meiji-gakuin University.

^{***)} The values of g on the set $\{rq^k: 1 \le r \le q-1, k \in N\}$, determine completely the q-additive function g(n).