79. On q-Additive Functions. I

By J.-L. Mauclaire*) and Leo Murata**)
(Communicated by Shokichi Iyanaga, m. J. A., June 14, 1983)

1. Let q be an arbitrary fixed natural number $\geqq 2$. Then a natural number n can be written in the unique way:

$$
n=\sum_{k=0}^{\infty} a_{k}(n) q^{k}, \quad 0 \leqslant a_{k}(n) \leqslant q-1 \quad(q \text {-adic expansion of } n) .
$$

We say that an arithmetic function $g(n)$ is q-additive, if

$$
\begin{equation*}
g(0)=0 \quad \text { and } \quad g(n)=\sum_{k=0}^{\infty} g\left(a_{k}(n) q^{k}\right) \tag{1}
\end{equation*}
$$

whenever $n=\sum_{k=0}^{\infty} a_{k}(n) q^{k}$ (cf. Gelfond [1]).***) The function "Sum of digits" $S_{q}(n)$ defined by $S_{q}(n)=\sum_{k=0}^{\infty} a_{k}(n)$, is a typical example of a q additive function.

Let $[x]$ denote the integral part of x, and $\zeta(s, r / q), 1 \leqslant r \leqslant q$ the Hurwitz zeta function defined by $\zeta(s, r / q)=\sum_{m=0}^{\infty}(m+r / q)^{-s}$ for $\operatorname{Re}(s)$ >1. We put
$\mathcal{A}=\{g(n): q$-additive function such that
\quad the convergence abscissa of $\left.\int_{1}^{\infty} g([t]) t^{-s-1} d t<\infty\right\}$,
$\mathscr{B}=\{H(z)$: Taylor series in z with positive radius of convergence $\}$.
In this article we give a result concerning a relation between \mathcal{A} and \mathscr{B}. Our theorem is:

Theorem. For q given functions $H_{r}(z) \in \mathscr{B}, 1 \leqslant r \leqslant q$, there exist a unique $g(n) \in \mathcal{A}$ and a unique $H(z) \in \mathscr{B}$ such that

$$
\begin{equation*}
\sum_{r=1}^{q} H_{r}\left(q^{-s}\right) \zeta\left(s, \frac{r}{q}\right)=s \cdot q^{s} \cdot \int_{1}^{\infty} g([t]) t^{-s-1} d t+q^{s-1} H\left(q^{-s}\right) \zeta(s) . \tag{2}
\end{equation*}
$$

Conversely, for a given $g(n) \in \mathcal{A}$ and an $H(z) \in \mathscr{B}$, there exists a unique system $H_{r}(z) \in \mathscr{B}, 1 \leqslant r \leqslant q$, which satisfies (2).

We intend to give, as an application of this result, an explicit summation formula $\sum_{n \leqslant x} g(n)$ for some q-additive functions, in a subsequent article.
2. The following lemma plays an important part in the proof of our Theorem.

[^0]
[^0]: *) C.N.R.S. and Waseda University.
 **) Meiji-gakuin University.
 ***) The values of g on the set $\left\{r q^{k}: 1 \leqslant r \leqslant q-1, k \in N\right\}$, determine completely the q-additive function $g(n)$.

