94. Generic Bifurcations of Varieties*)

By Shyūichi IZUMIYA
Department of Mathematics, Nara Women's University

(Communicated by Heisuke HIRONAKA, M. J. A., Oct. 12, 1982)

Let $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \rightarrow (\mathbf{R}^p, 0)$ be a smooth map germ. For each $u \in (\mathbf{R}^r, 0)$, we have a germ of "varieties" $f_u^{-1}(0)$ defined by $f_u = f \mid \mathbf{R}^r \times u$. In this note, we shall announce some results about bifurcations of $f_u^{-1}(0)$ as u varies in $(\mathbf{R}^r, 0)$. Details will appear elsewhere.

1. Parametrised contact equivalence. The local ring $C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r)$ is the ring of smooth function germs $(\mathbf{R}^n \times \mathbf{R}^r, 0) \to \mathbf{R}$. This ring has a maximal ideal \mathfrak{M}_{n+r} consisting of all germs with f(0) = 0. For a smooth map germ $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \to (\mathbf{R}^p, 0)$, we denote $I(f) = f^*(\mathfrak{M}_p)C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r)$, where $f^*: C_0^{\infty}(\mathbf{R}^p) \to C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r)$ is defined by $f^*(h) = h \circ f$.

Definition 1. Map germs $f, g: (\mathbf{R}^n \times \mathbf{R}^r, 0) \to (\mathbf{R}^p, 0)$ are P- \mathcal{K} -equivalent (resp. S.P- \mathcal{K} -equivalent) if there exists a diffeomorphism germ on $(\mathbf{R}^n \times \mathbf{R}^r, 0)$ of the form $\Phi(x, u) = (\Phi_1(x, u), \phi(u))$ (resp. $\Phi(x, u) = (\Phi_1(x, u), u)$) such that $\Phi^*(I(f)) = I(g)$. We denote $f \sim_{P} \mathcal{K} g$ (resp. $f \sim_{S.P} \mathcal{K} g$).

For each smooth map germ $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \rightarrow (\mathbf{R}^p, 0)$, the bifurcation map germ $\pi_f: (f^{-1}(0), 0) \rightarrow (\mathbf{R}^r, 0)$ is defined by $\pi_f(x, u) = u$.

Definition 2. For two map germs $f, g: (\mathbf{R}^n \times \mathbf{R}^r, 0) \rightarrow (\mathbf{R}^p, 0)$, bifurcation map germs π_f, π_g are \mathcal{A} -equivalent if there are diffeomorphism germs Φ on $(\mathbf{R}^n \times \mathbf{R}^r, 0)$ and ϕ on $(\mathbf{R}^r, 0)$ such that $\Phi(f^{-1}(0)) = g^{-1}(0)$ and $\phi \circ \pi_f = \pi_g \circ \Phi$.

Remarks. i) If f, g are P- \mathcal{K} -equivalent, then π_f, π_g are \mathcal{A} -equivalent.

- ii) For each $f: (\mathbf{R}^n, 0) \rightarrow (\mathbf{R}^p, 0)$, we define $D_f: (\mathbf{R}^n \times \mathbf{R}^p, 0) \rightarrow (\mathbf{R}^p, 0)$ by $D_f(x, y) = f(x) y$. We can see that P- \mathcal{K} -equivalence theory is one of the generalization of Mather's \mathcal{A} -equivalence theory (cf. [3], [4]).
- iii) The case when r=1, this equivalence relation has been studied by M. Golubitsky and D. Schaeffer ([1]). But the situation is quite different in the case of $r\geq 2$ (see the next section).
- 2. Finite determinacy. Definition 3. Let $f, g: (\mathbb{R}^n \times \mathbb{R}^r, 0) \to (\mathbb{R}^p, 0)$ be smooth map germs. i) f, g are k-jet equivalent if $(f^* g^*)(\mathfrak{M}_p) \subset \mathfrak{M}_{n+r}^{k+1}$. ii) f, g are (k_1, k_2) -jet equivalent if $(f^* g^*)(\mathfrak{M}_p) \subset (\mathfrak{M}_n^{k+1} + \mathfrak{M}_r^{k+1}) C_0^{\infty} (\mathbb{R}^n \times \mathbb{R}^r)$.

These are clearly equivalence relations; we respectively denote $j_0^k f$ and $j_0^{(k_1,k_2)} f$ of equivalence classes represented by f.

^{*)} Partially supported by the Sakkokai Foundation.