94. Generic Bifurcations of Varieties*)

By Shyūichi Izumiya
Department of Mathematics, Nara Women's University
(Communicated by Heisuke Hironaka, m. J. a., Oct. 12, 1982)

Let $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be a smooth map germ. For each $u \in\left(\boldsymbol{R}^{r}, 0\right)$, we have a germ of "varieties" $f_{u}^{-1}(0)$ defined by $f_{u}=f \mid \boldsymbol{R}^{r} \times u$. In this note, we shall announce some results about bifurcations of $f_{u}^{-1}(0)$ as u varies in $\left(\boldsymbol{R}^{r}, 0\right)$. Details will appear elsewhere.

1. Parametrised contact equivalence. The local ring $C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$ is the ring of smooth function germs $\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow \boldsymbol{R}$. This ring has a maximal ideal \mathfrak{M}_{n+r} consisting of all germs with $f(0)=0$. For a smooth map germ $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, we denote $I(f)=f^{*}\left(\mathfrak{M}_{p}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$, where $f^{*}: C_{0}^{\infty}\left(\boldsymbol{R}^{p}\right) \rightarrow C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$ is defined by $f^{*}(h)=h \circ f$.

Definition 1. Map germs $f, g:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ are P- Kequivalent (resp. S.P-K-equivalent) if there exists a diffeomorphism germ on ($\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0$) of the form $\Phi(x, u)=\left(\Phi_{1}(x, u), \phi(u)\right)$ (resp. $\Phi(x, u)$ $=\left(\Phi_{1}(x, u), u\right)$) such that $\Phi^{*}(I(f))=I(g)$. We denote $f \sim_{p-} \mathcal{K} g$ (resp. $\left.f \sim_{s . P-\mathcal{K}} g\right)$.

For each smooth map germ $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, the bifurcation map germ $\pi_{f}:\left(f^{-1}(0), 0\right) \rightarrow\left(\boldsymbol{R}^{r}, 0\right)$ is defined by $\pi_{f}(x, u)=u$.

Definition 2. For two map germs $f, g:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, bifurcation map germs π_{f}, π_{g} are A-equivalent if there are diffeomorphism germs Φ on $\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right)$ and ϕ on $\left(\boldsymbol{R}^{r}, 0\right)$ such that $\Phi\left(f^{-1}(0)\right)=g^{-1}(0)$ and $\phi \circ \pi_{f}=\pi_{g} \circ \Phi$.

Remarks. i) If f, g are P - \mathcal{K}-equivalent, then π_{f}, π_{g} are \mathcal{A} equivalent.
ii) For each $f:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, we define $D_{f}:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{p}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ by $D_{f}(x, y)=f(x)-y$. We can see that P - \mathcal{K}-equivalence theory is one of the generalization of Mather's \mathcal{A}-equivalence theory (cf. [3], [4]).
iii) The case when $r=1$, this equivalence relation has been studied by M. Golubitsky and D. Schaeffer ([1]). But the situation is quite different in the case of $r \geq 2$ (see the next section).
2. Finite determinacy. Definition 3. Let $f, g:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right)$ $\rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be smooth map germs. i) f, g are k-jet equivalent if (f^{*} $\left.-g^{*}\right)\left(\mathfrak{M}_{p}\right) \subset \mathfrak{M}_{n+r}^{k+1} . \quad$ ii) f, g are $\left(k_{1}, k_{2}\right)$-jet equivalent if $\left(f^{*}-g^{*}\right)\left(\mathfrak{M}_{p}\right)$ $\subset\left(\mathfrak{M}_{n}^{k_{1}+1}+\mathfrak{M}_{r}^{k_{2}+1}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$.

These are clearly equivalence relations; we respectively denote $j_{0}^{k} f$ and $j_{0}^{\left(k_{1}, k_{2}\right)} f$ of equivalence classes represented by f.
*) Partially supported by the Sakkokai Foundation.

