32. Construction of Integral Basis. III

By Kōsaku Okutsu
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Ifanaga, m. J. A., March 12, 1982)

Let o be a complete discrete valuation ring with the maximal ideal $\mathfrak{p}=\pi \mathrm{o}, k$ its quotient field, $f(x)$ a monic irreducible separable polynomial in $\mathfrak{o}[x]$ with degree n and θ a root of $f(x)$ in an algebraic closure \bar{k} of k. In Part II, we have defined primitive divisor polynomials (p.d.p.) $f_{1}(x), f_{2}(x), \cdots, f_{r}(x)$ of θ, by means of which we have given an integral basis of $K=k(\theta)$ explicitly. We have denoted the degree of $f_{i}(x)$ by $m_{i}(\theta, k)(i=1, \cdots, r)$. As we consider $\mathfrak{v}, k, f(x)$, and θ as fixed in this part, we shall write simply m_{i} for $m_{i}(\theta, k)$. We know $m_{r}=1, m_{0}=n$, and $m_{i} \mid m_{i-1}(i=1, \cdots, r)$.

Now we shall give a construction of these p.d.p. $f_{i}(x), i=1, \cdots, r$.
We begin with "last p.d.p." $f_{r}(x)$ of degree 1 , and proceed retrogressively: We shall obtain $f_{i-1}(x)$ from $f_{r}(x), f_{r-1}(x), \cdots, f_{i}(x) . f_{r}(x)$ can be obtained as follows.

We fix a complete set of representatives V of $\mathfrak{o} \bmod \mathfrak{p}$. By Hensel's lemma there exists a unique polynomial $g(x)$ in $\mathfrak{o}[x]$ with coefficients in V which is irreducible $\bmod \mathfrak{p}$ and $f(x) \equiv g(x)^{s} \bmod \mathfrak{p}$ where $s=\operatorname{deg} f / \operatorname{deg} h . \quad g(x)$ will be called the irreducible component of $f(x)$ $\bmod \mathfrak{p}$. If its degree is greater than 1 , then any monic polynomial with degree 1 , for example x, is a last p.d.p. If $g(x)$ is linear, put $g(x)=x-c_{\mathrm{r}}\left(c_{0} \in V\right)$. It is clear that $\operatorname{ord}_{\mathfrak{p}}\left(\theta-c_{0}\right)=\left(\operatorname{ord}_{\mathfrak{p}}\left(f\left(c_{0}\right)\right)\right) / n$. When $n \nmid \operatorname{ord}_{\mathfrak{p}}\left(f\left(c_{0}\right)\right), x-c_{0}$ is a last p.d.p. When $n \mid \operatorname{ord}_{\mathfrak{p}}\left(f\left(c_{0}\right)\right)$, put $F_{0}(x)=f(x), t_{1}=\left(\operatorname{ord}_{p}\left(F_{0}\left(c_{0}\right)\right)\right) / n$, and $F_{1}(x)=\sum_{i=0}^{n}\left(\left(F_{0}^{(i)}\left(c_{0}\right)\right) / i!\pi^{t_{1}(n-i)}\right) x^{i}$. Then $F_{1}(x)$ is shown to be a monic polynomial in $\mathfrak{o}[x]$.

Let $g_{1}(x)$ be the irreducible component of $F_{1}(x) \bmod \mathfrak{p}$. If deg $g_{1}(x)$ >1, then $x-c_{0}$ is a last p.d.p. If $g_{1}(x)$ is linear and equal to $x-c_{1}$ then consider $\left(\operatorname{ord}_{\mathfrak{p}}\left(F_{1}\left(c_{1}\right)\right)\right) / n=t_{2}$. If $t_{2} \notin N$, then $x-\left(c_{0}+c_{1} \pi^{t_{1}}\right)$ is a last p.d.p. If $t_{2} \in N$, then we define $F_{2}(x)$ from $F_{1}(x)$ just as we have defined $F_{1}(x)$ from $F_{0}(x)$. We may obtain a last p.d.p. of the form $x-\left(c_{0}+c_{1} \pi^{t_{1}}+c_{2} \pi^{t_{1}+t_{2}}\right)$, or we should continue further in the same way. This procedure ends after a finite number of steps.

Let α_{i} be a root of $f_{i}(x)$ in \bar{k} and let e_{i}, f_{i} be the ramification index, the residue class degree of the extension $k\left(\alpha_{i}\right)$ over $k(i=0,1, \cdots, r)$. We fix $i(1<i \leq r)$, and assume that $f_{i}(x), f_{i+1}(x), \cdots, f_{r}(x)$ are already obtained. Then the following propositions give e_{i-1}, f_{i-1}, and finally the theorem will determine $f_{i-1}(x)$.

