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The purpose of this note is to outline our recent results on the
structure of algebraic surfaces which may not be complete. Details
will be published elsewhere.

1o A triple (X, X, D) is said to be a non-singular triple, if X is a
complete non-singular surface over the field of complex numbers and
if D is a divisor with only simple normal crossings such that X=X\D.
We denote by K(X) the canonical divisor on X. We define logarithmic
m-genera P(X) and the logarithmic Kodaira dimension (X) by

P(X) dim H(X, m(K(X)/D)),
z(X) x(K(X)+D, X)

(see [2]).
In general, let z/be a divisor on X with x(z/, X)_ 0. Then one has

a Q-divisor d and an effective Q-divisor z/- such that
(1) =++-,
(9.) d+ is semiposiive (i.e. (d+, F)>_0 ]?or all curves F on X),
(3) the intersection matrix of z/- is negative-definite or /-=0,
(4) (+, -)=0.

This decomposition is unique and is called the Zariski decomposition
of /(see [4] or [51).

The main results are summarized as ollows
Theorem 1. If e(X) O, then P(X) 1 for some i, 1 i_66.
Theorem 2. If e(X)>_O and if D is connected, then Px(X)>O.

We shall outline proofs of hese theorems. A triple (X, X, D) is said
to be almost minimal i ghe support o (K(X)+D)- contains no excep-
tional curve of the 1st kind.

Lemma 3. Given a triple (X, X, D) with z(X)_>0, there exist an
almost minimal triple (Z, Z,B) and a birational morphism f" X--+Z
having the following properties"

(1) B=f.(D),
(2) (K(X) +D) =f*((K(Z)+B) +).
By the above lemma, it suffices to prove the theorems or almost

minimal triples (X, X, D). We need the ollowiag
Proposition 4. If (X, X, D) is almost minimal, then D-(K(X)+

+D)-) is effective and (X, D-(K(X)+D)-) is a relatively minimal model


