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1. The aim of the present note is to give the description of
monodromy preserving deformation of a linear ordinary differential
equation of the form

(1) .PY =_ (x ff- +L ff-ff- +Mx+N)Y O

in a Hamiltonian form and to establish transformation formulas of the
associated ’r functions’ ([2]-[5]). Here the coefficients L, M and N are
constant matrices of size r while Y can be a column vector as well as
a square matrix of size r of functions o x. We assume that L (resp.
M) has distinct eigenvalues which we write -a (resp. -c), ]= 1, ..., r
so that -L (resp. --M) is conjugate to the diagonal matrix A
=(afl),=,...,r (resp. C=(cfi),=,...,). Hereafter we shall normalize
-L=QAQ-, -M=C so that we can write

(2) .F=Q(x-A)Q-( d

by setting B LM-N, B’=1+ML--N. We have
( 3 ) B’=lq-B-[QAQ-, C].
We also set" P=Q-B, E--(ce(,)c,,=x,...,r and B=QEP. By writing
our equation, _L’Y=0, as

d Y=(Q(x-A)-’P+C)Y(4)
dx

and observing (x-A)-=y__ (x-a)-E, we see that (1) is equivalent
to

(5) d y=( B+C)y, with B of rank<_X,
dx j=l

an equation with regular singularities at x=a, ..., a and an irregular
singularity of rank 1 at x-c. Note that the number of regular singu-
larities is equal to the size r.

Conversely, suppose we are given an equation (5) with rank of
B_I and C=(cfl) diagonal. Set 2=trace B which is an eigenvalue
of B, and define Q to be the matrix whose ]-th column vector [Q] is
the eigenvector of B belonging to the eigenvalue 2" B[Q]=,[Q].

*) This work was done while the author stayed at RIMS, Kyoto University
on leave of absence.


