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1. We want to define some structures on 2oliated manifolds and
Lie algebras o vector fields associated with the structures, and deter-
mine their derivation algebras. We have two directions" One is to
consider structures on leaves; the other on transversals to leaves. In
this article we treat only the ormer (see [2] or details and proofs),
and for the latter we will discuss elsewhere.

Let M be a (pq-q)-dimensional smooth manifold, and a codimen-
sion q 2oliation on M. Denote by (M,) the Lie algebra of all leaf-
tangent vector fields on (M, ), and by 9(M) the exterior algebra of all
differential forms on M, and define its differential ideal J(M, ) as

J(M, )={a e/2(M) a(X, X, )=0 or X e (M, )}
{a e/2(M) *a=0 or every lea L of },

where is the inclusion mapping of L in M. Then J(M, ) is Lz-stable
for any X e (M, ), where Lx means the Lie derivative.

A p-form r on M is called a partially unimodular structure on
(M, ), if *r=/=0 for every leaf L of , that is, *r is a volume form on
L. Then r is partially closed, that is, dr e (M, ).

Let p--2n. A 2-orm w on M is called a partially symplectic
structure on (M, ), if w is partially closed and *w is of rank 2n or
every leaf L of .

Let p=2n+l. A 1-form on M is called a partially contact
structure on (M, ), if (*0)A(*dS)n=/=0 for every lea L of .

We can get normal orms of these partially classical structures on
(M, ) as follows; for suitable distinguished coordinates (v, ..., v,
Wl, ,

’----dVl/. /dv, o-- dv/dv+, =--dv+-l
=1 i=1

(mod J(M, )).
2. Let r be a partially unimodular structure on (M, ). A vector

field X e (M,) is called partially conformally unimodular, if Lzr is
congruent to Cr modulo (M,) or some unction e C(M), where
C(M) is the space of smooth functions on M which are constant on
each leaves of . Moreover, if the function is zero, X is called
partially unimodular. Then we get two natural Lie subalgebras of


