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1. Introduction. This note is concerned with the initial-boundary
value problem:
( 1 ) u+((u))+u u 0, t R, x e (0, 1),
( 2 ) u(0, x)= g(x), x e (0, 1),
( 3 ) u(t, O)=u(t, ), t e R,
where 0, is a unction of class C(R) satisfying (0)=0 and g is a
given initial function satisfying g(0)= g(1).

The pseudo-parabolic equation (1) is understood to be a generaliza-
tion of model equations or long water waves of small amplitude (see
for instance [1]). The equation (1) is also regarded as a regularization
of the generalized Kortweg-de Vries equation

( 4 ) u+ ((u))x+Uxxx O.
For the parabolic regularizations of the generalized KdV equation,
see [4].

Here we treat the initial-boundary value problem (1)-(3) from the
viewpoint of the semigroup theory and describe the properties of
solutions of the problem in terms of nonlinear group in a Hilbert space.

2. Theorem. We denote by II" the norm of the Lebesgue space
L(0, 1). For each positive integer m, we write V for the closed sub-
space of the Sobolev space H(0, 1) defined by

V=(v e H’(O, 1); v(O)=v(1),
We also denote by D the differential operator d/dx from H(0, 1)into
L(0, 1), i.e., D is defined by Dv=v’ for v e H’(0, 1).

Now we define a linear operator L, from V into V by

Lv=lDv for v e V,
and a nonlinear operator F on V b’y

for v e V and x e [0, 1], where

K,(x, ): sgn(x--,)(exp( ]x--’l.)--exp(1--,x--, )} or x , [0, 1]
2(1-- e) /- /-

Note that w=_F,v gives a unique solution of the boundary value problem


