82. On the Zero-Free Region of Dirichlet's L-Functions

By Yoichi MOTOHASHI

Department of Mathematics, College of Science and Technology, Nihon University

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1978)

1. Let $L(s, \chi)$ $(s=\sigma+it)$ be the Dirichlet *L*-function for a Dirichlet character χ . We denote by $\mathbb{Z}(T)$ the set of all zeros in the region $0 \le \sigma \le 1$, $|t| \le T$ of all primitive *L*-functions of modulus $\le T$. Then the fundamental result on the zero-free region for $L(s, \chi)$ is

Theorem. For any $\rho \in \mathbb{Z}(T)$ we have

(1) $\operatorname{Re} \rho \leq 1 - c_0 (\log T)^{-1},$

save for at most one zero, where c_0 is an effectively computable positive constant. This (possibly existing) exceptional zero β_1 is real and simple, and comes from $L(s, \chi_1)$ with a unique real character χ_1 . Further there exists a function $c(\varepsilon) > 0$ such that for any $\varepsilon > 0$

(2)
$$\beta_1 \leq 1 - c(\varepsilon) T^{-\varepsilon}.$$

(1) is the Page-Landau theorem, and (2) is Siegel's theorem in which $c(\varepsilon)$ is not effectively computable. The purpose of the present note is to modify the argument of our preceding note [1] so as to prove this theorem without appealing to the deep function-theoretical properties of $L(s, \chi)$. The details will appear elsewhere.

2. In what follows we assume always that T is sufficiently large. Lemma 1. Uniformly for $0 \le \sigma \le 1$ and for $\chi(\text{mod } q)$ we have

 $L(s,\chi) \ll (q(|t|+1))^{1-\sigma} \log (q(|t|+2)).$

If χ is principal, the region $|s-1| \leq 1/2$ should be excluded.

Lemma 2. For any
$$\rho \in \mathbb{Z}(T)$$
 we have

$$\operatorname{Re}\rho \leq 1 - T^{-3}.$$

Lemma 1 is not the best among results of this type, but the above assertion can be proved only by the partial summation. Lemma 2 is quite rough, but this is important in our procedure. To prove it let $L(\rho,\chi)=0$. Either if χ is complex or if $|\operatorname{Im}(\rho)| \ge T^{-2}$, then the argument of [2, pp. 43–44] does work also for $L(s,\chi)$. So in these cases we have Re $\rho \le 1-T^{-3}$. Otherwise let $a(n) = \sum_{d \mid n} \chi(d)$. Then $a(n) \ge 0$ and $a(n^2)$

 ≥ 1 . So by Lemma 1, we have

 $egin{aligned} N^{1/2} &\ll \sum_{n \leq N} a(n) (\log N/n)^2 \ &= 2L(1,\chi)N + O(T(\log T)^2). \end{aligned}$

Hence $L(1,\chi) \gg T^{-1}(\log T)^{-2}$, from which the desired assertion follows easily.