82. On the Zero-Free Region of Dirichlet's L-Functions

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1978)

1. Let $L(s, \chi)(s=\sigma+i t)$ be the Dirichlet L-function for a Dirichlet character χ. We denote by $\mathcal{Z}(T)$ the set of all zeros in the region $0<\sigma<1,|t| \leqq T$ of all primitive L-functions of modulus $\leqq T$. Then the fundamental result on the zero-free region for $L(s, \chi)$ is

Theorem. For any $\rho \in \mathscr{Z}(T)$ we have

$$
\begin{equation*}
\operatorname{Re} \rho \leqq 1-c_{0}(\log T)^{-1} \tag{1}
\end{equation*}
$$

save for at most one zero, where c_{0} is an effectively computable positive constant. This (possibly existing) exceptional zero β_{1} is real and simple, and comes from $L\left(s, \chi_{1}\right)$ with a unique real character χ_{1}. Further there exists a function $c(\varepsilon)>0$ such that for any $\varepsilon>0$

$$
\begin{equation*}
\beta_{1} \leqq 1-c(\varepsilon) T^{-\varepsilon} . \tag{2}
\end{equation*}
$$

(1) is the Page-Landau theorem, and (2) is Siegel's theorem in which $c(\varepsilon)$ is not effectively computable. The purpose of the present note is to modify the argument of our preceding note [1] so as to prove this theorem without appealing to the deep function-theoretical properties of $L(s, \chi)$. The details will appear elsewhere.
2. In what follows we assume always that T is sufficiently large.

Lemma 1. Uniformly for $0 \leqq \sigma \leqq 1$ and for $\chi(\bmod q)$ we have

$$
L(s, \chi) \ll(q(|t|+1))^{1-\sigma} \log (q(|t|+2)) .
$$

If χ is principal, the region $|s-1| \leqq 1 / 2$ should be excluded.
Lemma 2. For any $\rho \in \mathcal{Z}(T)$ we have

$$
\operatorname{Re} \rho \leqq 1-T^{-3}
$$

Lemma 1 is not the best among results of this type, but the above assertion can be proved only by the partial summation. Lemma 2 is quite rough, but this is important in our procedure. To prove it let $L(\rho, \chi)=0$. Either if χ is complex or if $|\operatorname{Im}(\rho)| \geqq T^{-2}$, then the argument of [2, pp. 43-44] does work also for $L(s, \chi)$. So in these cases we have $\operatorname{Re} \rho \leqq 1-T^{-3}$. Otherwise let $a(n)=\sum_{d \mid n} \chi(d)$. Then $a(n) \geqq 0$ and $a\left(n^{2}\right)$ $\geqq 1$. So by Lemma 1 , we have

$$
\begin{aligned}
N^{1 / 2} & \ll \sum_{n \leq N} a(n)(\log N / n)^{2} \\
& =2 L(1, \chi) N+O\left(T(\log T)^{2}\right)
\end{aligned}
$$

Hence $L(1, \chi) \gg T^{-1}(\log T)^{-2}$, from which the desired assertion follows easily.

