72. Parallel Vector Fields and the Betti Number

By Yosuke Ogawa and Shun-ichi Tachibana
Department of Mathematics, Ochanomizu University
(Communicated by Kunihiko Kodarra, m. J. A., Nov., 13, 1978)

Introduction. Let M^{n} be an n dimensional connected compact orientable smooth Riemannian manifold. In the previous paper [3] we showed that the Betti numbers of M^{n} with one or two parallel vector fields satisfy some inequalities. In this note we shall generalize these results to the case of M^{n} admitting r parallel vector fields ($1 \leqq r$ $\leqq n$). A trivial example of such M^{n} is the Riemannian product $T^{r} \times M^{n-r}$, where T^{r} is the flat r-torus and M^{n-r} is any Riemannian manifold.

1. Preliminaries. Let \mathscr{H}_{p} be the vector space of harmonic p forms on M^{n}. $\operatorname{dim} \mathcal{H}_{p}$ is equal to the p-th Betti number b_{p}. We make a convention that $\mathcal{A}_{p}=\{0\}$ for $p>n$ or $p<0$ and hence all operators act trivially on such spaces. Throughout the paper we shall denote by p any integer.

Let u be a vector field on M^{n}. By the natural identification with respect to the Riemannian metric, u is identified with a 1-form which will be denoted by u again. $e(u)$ and $i(u)$ denote respectively the operators of exterior and interior product by u. For a p-form ω, we have $e(u) \omega=u \wedge \omega$ and

$$
(i(u) \omega)\left(X_{1}, \cdots, X_{p-1}\right)=\omega\left(u, X_{1}, \cdots, X_{p-1}\right)
$$

where X_{1}, \cdots, X_{p-1} are tangent vectors. These operators satisfy $e(u)^{2}$ $=i(u)^{2}=0 . \quad i(u)$ is an anti-derivation and hence
(1)

$$
i(u) e(u)+e(u) i(u)=I
$$

holds for a unit vector field u, where I is the identity on p-form.
2. Parallel vector fields. Let u be a parallel vector field on M^{n}. First we notice that $\omega \in \mathcal{H}_{p}$ implies $e(u) \omega \in \mathcal{H}_{p+1}$ and $i(u) \omega \in \mathcal{H}_{p-1}$.

Now we assume that M^{n} admits $r(1 \leqq r \leqq n)$ linearly independent parallel vector fields u_{1}, \cdots, u_{r}. Making use of the Schmidt process, we may suppose that u_{1}, \cdots, u_{r} are orthonormal, i.e.,

$$
i\left(u_{k}\right) u_{j}=\delta_{k j} \quad(1 \leqq k, j \leqq r) .
$$

$a_{1}, \cdots, a_{k}\left(1 \leqq a_{1}, \cdots, a_{k} \leqq r\right)$ being integers, let us define

$$
\begin{aligned}
& i_{a_{1} \cdots a_{k}}=i\left(u_{a_{1}}\right) \cdots i\left(u_{a_{k}}\right): \mathcal{H}_{p} \rightarrow \mathcal{H}_{p-k}, \\
& e_{a_{1} \cdots a_{k}}=e\left(u_{a_{1}}\right) \cdots e\left(u_{a_{k}}\right): \mathcal{H}_{p} \rightarrow \mathcal{H}_{p+k} .
\end{aligned}
$$

Lemma. For $1 \leqq s \leqq r$, we have

$$
\begin{equation*}
I=-\sum_{k=1}^{s} \sum_{1 \leqq a_{1}<\cdots<a_{k} \leq s}(-1)^{k(k+1) / 2} e_{a_{1} \ldots a_{k}} i_{a_{1} \ldots a_{k}}+(-1)^{s(s-1) / 2} i_{1 \ldots s} e_{1 \ldots s} \tag{2}
\end{equation*}
$$

