72. Parallel Vector Fields and the Betti Number

By Yosuke OGAWA and Shun-ichi TACHIBANA Department of Mathematics, Ochanomizu University (Communicated by Kunihiko KODAIRA, M. J. A., Nov., 13, 1978)

Introduction. Let M^n be an *n* dimensional connected compact orientable smooth Riemannian manifold. In the previous paper [3] we showed that the Betti numbers of M^n with one or two parallel vector fields satisfy some inequalities. In this note we shall generalize these results to the case of M^n admitting *r* parallel vector fields $(1 \le r \le n)$. A trivial example of such M^n is the Riemannian product $T^r \times M^{n-r}$, where T^r is the flat *r*-torus and M^{n-r} is any Riemannian manifold.

1. Preliminaries. Let \mathcal{H}_p be the vector space of harmonic p-forms on M^n . dim \mathcal{H}_p is equal to the p-th Betti number b_p . We make a convention that $\mathcal{H}_p = \{0\}$ for p > n or p < 0 and hence all operators act trivially on such spaces. Throughout the paper we shall denote by p any integer.

Let u be a vector field on M^n . By the natural identification with respect to the Riemannian metric, u is identified with a 1-form which will be denoted by u again. e(u) and i(u) denote respectively the operators of exterior and interior product by u. For a p-form ω , we have $e(u)\omega = u \wedge \omega$ and

 $(i(u)\omega)(X_1, \cdots, X_{p-1}) = \omega(u, X_1, \cdots, X_{p-1})$

where X_1, \dots, X_{p-1} are tangent vectors. These operators satisfy $e(u)^2 = i(u)^2 = 0$. i(u) is an anti-derivation and hence

$$i(u)e(u) + e(u)i(u) = I$$

holds for a unit vector field u, where I is the identity on p-form.

2. Parallel vector fields. Let u be a parallel vector field on M^n . First we notice that $\omega \in \mathcal{H}_p$ implies $e(u)\omega \in \mathcal{H}_{p+1}$ and $i(u)\omega \in \mathcal{H}_{p-1}$.

Now we assume that M^n admits r $(1 \le r \le n)$ linearly independent parallel vector fields u_1, \dots, u_r . Making use of the Schmidt process, we may suppose that u_1, \dots, u_r are orthonormal, i.e.,

$$\begin{split} i(u_k)u_j = \delta_{kj} & (1 \leq k, \ j \leq r).\\ a_1, \cdots, a_k \ (1 \leq a_1, \cdots, a_k \leq r) \text{ being integers, let us define}\\ i_{a_1 \cdots a_k} = i(u_{a_1}) \cdots i(u_{a_k}) : \mathcal{H}_p \to \mathcal{H}_{p-k},\\ e_{a_1 \cdots a_k} = e(u_{a_1}) \cdots e(u_{a_k}) : \mathcal{H}_p \to \mathcal{H}_{p+k}.\\ \end{split}$$
Lemma. For $1 \leq s \leq r$, we have

(2)
$$I = -\sum_{k=1}^{s} \sum_{1 \le a_1 < \cdots < a_k \le s} (-1)^{k(k+1)/2} e_{a_1 \cdots a_k} i_{a_1 \cdots a_k} + (-1)^{s(s-1)/2} i_{1 \cdots s} e_{1 \cdots s}.$$

(1)