47. The Sheaf of Relative Canonical Forms of a Kähler Fiber Space over a Curve

By Takao Fujita
Department of Mathematics, College of General Education, University of Tokyo, Komaba, Meguro, Tokyo 153
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1978)

In this note we announce an improvement of a result in [1]. Details shall be published elsewhere.

A triple $f: M \rightarrow S$ of a holomorphic mapping f and compact complex manifolds M, S is called a Kähler fiber space if M is Kähler, f is surjective and any general fiber of f is connected. By $\omega_{M / S}$ we denote the relative dualizing sheaf $\omega_{M} \otimes f^{*} \omega_{S}^{\breve{s}}=\mathcal{O}_{M}\left[K_{M}-f^{*} K_{S}\right]$. Then we have the following

Theorem. Let $f: M \rightarrow C$ be a Kähler fiber space over a curve C. Then $f_{*} \omega_{M / C} \cong \mathcal{O}_{C}[A \oplus U]$ for an ample vector bundle A and a flat vector bundle U on C.

For a proof, we show the following lemma and use the criterion of Hartshorne [4].

Lemma. Let E be the vector bundle such that $f_{*} \omega_{M / C} \cong \mathcal{O}_{C}[E]$. Then $\operatorname{deg}(\operatorname{det} Q) \geqq 0$ for any quotient bundle Q of E. Moreover, if $\operatorname{deg}(\operatorname{det} Q)=0$, then Q is a direct sum component of E and has a flat connection.

Outline of the proof of lemma. Let S be the image of singular fibers of f and let $C^{o}=C-S$. Note that the restriction $E_{C^{\circ}}$ of E to C^{o} is isomorphic to the bundle $\bigcup_{x \in C_{0}} H^{n, 0}\left(F_{x}\right)$, where $F_{x}=f^{-1}(x)$ and $n=\operatorname{dim} F_{x}$. Hence $E_{C o}$ has a natural Hermitian structure. This defines a Hermitian structure of $Q_{C \circ}$ in a canonical manner. Let Ω be the Chern De Rham curvature form representing $c_{1}\left(Q_{C_{o}}\right)$. Then we have the following formula: $\operatorname{deg}(\operatorname{det} Q)=\int_{C_{0}} \Omega+\sum_{p \in S} e_{p}$, where e_{p} is the local exponent of $\operatorname{det} Q$ at $p \in S$ (see [3]). Similarly as in [1], we prove that Ω is semi-positive and that $e_{p} \geqq 0$ for any $p \in S$. So $\operatorname{deg}(\operatorname{det} Q)$ $\geqq 0$. Moreover, if $\operatorname{deg}(\operatorname{det} Q)=0$, then $\Omega \equiv 0$ and $e_{p}=0$ for any p. $\Omega \equiv 0$ implies that the orthogonal complements $\tilde{Q}_{x}\left(x \in C^{o}\right)$ of $\operatorname{Ker}\left(E_{x}\right.$ $\rightarrow Q_{x}$), considered as subspaces of $H^{n, 0}\left(F_{x}\right) \subset H^{n}\left(F_{x} ; C\right)$, form a flat subbundle of the flat bundle $\bigcup_{x \in C_{0}} H^{n}\left(F_{x} ; C\right)$. So, $Q_{C o}$ is isomorphic to the vector bundle $\tilde{Q}_{o}=\bigcup_{x \in C^{0}} \tilde{Q}_{x}$ associated with the monodromy action of $\pi_{1}\left(C^{o}, x_{o}\right)$ on $\tilde{Q}_{x_{o}} \subset H^{n}\left(F_{x_{0}} ; C\right)$, where x_{o} is a point on C^{o}. Now, $e_{p}=0$

