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In this note we announce an improvement of a result in [1].
Details shall be published elsewhere.

A triple f" M-S of a holomorphic mapping f and compact com-
plex manifolds M, S is. called a Khler fiber space if M is Kihler, f is
surjective and any general fiber of f is connected. Bys we denote
the relative dualizing sheaf (R)f*o--G[K--f*Ks]. Then we have
the following

Theorem. Let f" M-C be a Kdhler fiber space over a curve C.
Then f.OM/C-(c[AU] for an ample vector bundle A and a fiat vector
bundle U on C.

For a proof, we show the following lemma and use the criterion
of Hartshorne [4].

Lemma. Let E be the vector bundle such that f,O)M/V--(c[E].
Then deg (det Q)0 for any quotient bundle Q of E. Moreover, if
deg (det Q)---0, then Q is a direct sum component of E and has a fiat
connection.

Outline of the proof of lemma. Let S be the image of singular
fibers of f and let C=C--S. Note that the restriction Eco of E to
C is isomorphic to the bundle H.(F), where F=f-(x) and
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n:dim F. Hence Eco has a natural Hermitian structure. This de-
fines a Hermitian structure of Qco in a canonical manner. Let /2 be
the Chern De Rham curvature form representing c(Qco). Then we

have the ollowing ormula" deg (det Q):[" 9 + e,, where e is the
JGo pS

local exponent of det Q at p e S (see [3]). Similarly as in [1], we prove
that 2 is. semi-positive and that e >=0 for any p e S. So deg (det Q)
>__0. Moreover, if deg (det Q)-0, then /2-0 and e=0 or any p.
9=_0 implies that the orthogonal complements. Q, (x e C) of Ker (E,
--.Q,), considered as subspaces of H,(F,)cH(F,; C), form a flat
subbundle of the flat bundle O H(F, C). So, Qco is isomorphic to
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the vector bundle Qo-- Q associated with the monodromy action o
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u(C, Xo) on QoH(Fo C), where xo is a point on C. Now, e--O


