44. On Closed Subvarieties of Parabolic Type in Certain Quasi-Projective Spaces of Hyperbolic Type

By Seizō Furuno
Department of Mathematics, Gakushuin University, Mejiro, Tokyo 171
(Communicated by Kunihiko Kodaira, m. J. a., June 15, 1978)

Introduction. Recently S. Iitaka has developed a theory of logarithmic forms for algebraic varieties from proper birational geometric viewpoint and as an application he classified varieties of the form $V=\left(P^{n}-\right.$ a union of hyperplanes) by means of logarithmic Kodaira dimension $\bar{\kappa}$ [1]. The present note is based on these results. We study closed subvarieties Γ 's of V with $\bar{\kappa}(\Gamma)=0$ for V with $\bar{\kappa}(V)=n$. Recall that $\Gamma \simeq \boldsymbol{G}_{m}^{r}$, where \boldsymbol{G}_{m}^{r} denotes the r-dimensional algebraic torus. For our purpose, the maximal ones among V 's are useful.

1. Maximality. Let $V^{n}=\boldsymbol{P}^{n}(\boldsymbol{C})-L_{0} \cup \cdots \cup L_{q}$ where L_{j} 's are distinct hyperplanes in $P^{n}(C)$. The conditions in terms of coordinates for V^{n} with $\bar{\kappa}\left(V^{n}\right)=n$ can be described as follows. We may assume L_{j} is defined by $X_{j}=0,0 \leqq j \leqq n$. For the other equations, putting $s=q-n$, define $I_{1}, \cdots, I_{s} \subset\{0,1, \cdots, n\}$ by $I_{j}=\left\{i \mid\right.$ coef. of X_{i} of L_{n+j} is not zero. $\}$ Then renumbering j if necessary, the following conditions 0) and 1) are satisfied.
0) $I_{1} \cup \cdots \cup I_{s}=\{0,1, \cdots, n\}$
1) $I_{1} \cup \cdots \cup I_{j-1}$ is not disjoint to I_{j} for $2 \leqq j \leqq n$.

Proposition 1. Let $C a_{j}$ be the one dimensional subspace of \boldsymbol{A}^{n+1} corresponding dually to $L_{j}, 0 \leqq j \leqq q$. Let $\left(\boldsymbol{A}^{7}, A^{i}\right)$ denote a pair of proper subspaces of A^{n+1} with $A^{r} \cap A^{\delta}=\{0\}$. Then V^{n} satisfies the above conditions 0) and 1), if and only if the following (C) holds.
(C) $\boldsymbol{A}^{r} \cup \boldsymbol{A}^{8}$ dose not contain all of Ca_{j} 's for any $\left(\boldsymbol{A}^{\gamma}, \boldsymbol{A}^{8}\right)$.

Proposition 2. If V^{n} with $\bar{\kappa}\left(V^{n}\right)=n$ is maximal, we can impose on V^{n} the following additional conditions 2) and 3):
2) There are s numbers, $2 \leqq i(1)<\cdots<i(s)=n$, such that

$$
\begin{aligned}
& I_{1}=\{i \mid 0 \leqq i \leqq i(1)\} \\
& I_{j}-I_{1} \cup \cdots \cup I_{j-1}=\{i \mid i(j-1)<i \leqq i(j)\}, 2 \leqq j \leqq s
\end{aligned}
$$

3) Any two of I_{j} 's never have only one common element.

Proof of Proposition 2. 2) is obvious. Assume that $I_{j 1} \cap I_{j 2}=\{k\}$. Let $\boldsymbol{C} e_{0}, \cdots, \boldsymbol{C} e_{n}, \boldsymbol{C} a_{1}, \cdots, \boldsymbol{C} a_{s}$ be corresponding dually to $L_{0}, \cdots, L_{n}, L_{n+1}$, \cdots, L_{n+s}. Let A_{0} be the subspace of A^{n+1} spanned by $\left\{e_{i} \mid i \in I_{j 1} \cup I_{j 2}\right\}$. Since we are assuming that V^{n} is maximal, there is, by Proposition 1, ($\boldsymbol{A}^{r}, A^{8}$) such that $\left\{e_{0}, \cdots, \check{e}_{k}, \cdots, e_{n}, a_{1}, \cdots, a_{s}\right\} \subset A^{r} \cup A^{8}$. This also induces a splitting $\left(A_{0} \cap A^{r}, A_{0} \cap A^{i}\right)$ for $\left\{e_{i} \mid i \in I_{j_{1}} \cup I_{j 2}, i \neq k\right\} \cup\left\{a_{j 1}, a_{j 2}\right\}$ in

