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Introduction. We extend ordinary L-functions slightly and study
their meromorphy. For simplicity we describe here the results on
Euler products of Artin type which are contained in Part I of [3]. In
Parts II and III of [3] we have some generalizations and modifications.
Detailed proofs are described in [3].

§ 1. Euler products of Artin type. Let F' be a finite extension
of the rational number field @, K/F a finite Galois extension with the
Galois group G=Gal (K/F), R(G) the character ring of G (i.e. the ring
of virtual characters of G ; representations are over the complex num-
ber field C). For g € G (or for the conjugacy class of G containing g)
and for H(T) e 1+ T -R(G)[T] where T is an indeterminate, we denote
by H,(T)e1+T-CI[T] the polynomial obtained from H(T) by taking
the values of the coefficients at g. For each prime ideal p of F' un-
ramified in K/F, let a(p) denote the Frobenius conjugacy class [I—{i[é—F
in G, where P is a prime ideal of K dividing p. We define L(s, H)
=1, Howy ™N(p)~*)~' where p runs over all prime ideals of F' unramified
in K/F.

We say H(T) e 1+T-CI[T] is unitary if there exists a (complex)
unitary matrix M such that H(T)=det 1—MT). We say H(T)=1 is
unitary. For an Euler product over F' (F'/Q being a finite extension)
L(s, H)=T[,H(N(p) ) with H=(H),, H(T) € 1+T-CI[T], where p
runs over all prime ideals of F', we say L(s, H) is unitary if H,(T) are
unitary for all p. In general if H,(T) is not defined for a prime ideal p
of F, then we consider H(T)=1. We remark that the unitariness of
L(s, H) is not altered when we consider L(s, H) as an Euler product
over @ in the natural way. More precisely if Fy is a subfield of F,
then we can consider L(s, H) as an Euler product over F'; in the natural
way as follows: for each prime ideal q of F,, put H(T)=[], H,(T/¢®)
where p runs over all prime ideals of F' dividing q and f(p|q) is the
relative degree of p over q, then L(s, H)=L(s, H,) with H,=(H,),. Un-
der this process the unitariness is not altered. It may be remarked
that the unitariness is an analogue of the (normalized) “Riemann-
Ramanujan-Weil conjecture” or ‘“temperedness” for some arithmetic
objects.



