# 41. On the Logarithmic Kodaira Dimension of the Complement of a Curve in $\mathrm{P}^{2}$ 

By Isao Wakabayashi<br>Department of Mathematics, Tokyo University of Agriculture and Technology, Fuchu, Tokyo

(Communicated by Kunihiko Kodaira, M. J. A., June 15, 1978)

1. The logarithmic Kodaira dimension introduced by S. Iitaka [1] plays an important role in the study of non-compact algebraic varieties. In this note we calculate the logarithmic Kodaira dimension $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right)$ of the complement of an irreducible curve $C$ in the complex projective space $P^{2}$ of dimension 2 . We denote by $g(C)$ the genus of the nonsingular model of $C$. In this note, a locally irreducible singular point of $C$ will be called cusp. Our results are as follows

Theorem. Let $C$ be an irreducible curve of degree $n$ in $\boldsymbol{P}^{2}$.
( I ) If $g(C) \geqslant 1$ and $n \geqslant 4$, then $\bar{\kappa}\left(P^{2}-C\right)=2$.
( II ) If $g(C)=0$ and $C$ has at least three cusps, then $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right)=2$.
(III) If $g(C)=0, C$ has at least two singular points, and one of the singular points is locally reducible, then $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right)=\mathbf{2}$.
(IV) If $g(C)=0$ and $C$ has two cusps, then $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right) \geqslant 0$.

For the definition of logarithmic Kodaira dimension, see S. Iitaka [1].

Remark 1. It is with ease to show that $\bar{\kappa}\left(\boldsymbol{P}^{2}-C\right)=0$ for any nonsingular elliptic curve $C$ of degree 3 in $\boldsymbol{P}^{2}$.

Remark 2. F. Sakai [5] and S. Iitaka [3], independently of us, showed the same result as Case (I).
2. Monoidal transformations. Let

$$
\tilde{\boldsymbol{P}}^{2}=S_{t} \xrightarrow{\pi_{t}} S_{t-1} \longrightarrow \cdots \longrightarrow S_{1} \xrightarrow{\pi_{1}} \boldsymbol{P}^{2}
$$

be a finite sequence of monoidal transformations with successive centers $p_{1}, \cdots, p_{t}$. We pose $\pi=\pi_{1} \circ \cdots \circ \pi_{t}: \tilde{\boldsymbol{P}}^{2} \rightarrow \boldsymbol{P}^{2}$. Let $E_{i}$ be the exceptional curve of the monoidal transformation $\pi_{i}$. Let us denote by $E_{i}^{\prime}$ the proper transform of $E_{i}$ by $\pi_{i+1} \circ \cdots \circ \pi_{t}$. By definition, $E_{i}$ is a divisor in $S_{i}$, but we shall use for the sake of simplicity the same letter $E_{i}$ for $\left(\pi_{i+1} \circ \cdots \circ \pi_{t}\right) * E_{i}$ also. Let $H$ be an arbitrary line in $\boldsymbol{P}^{2}$. We shall use the same letter $H$ for $\pi^{*} H$ also.

We frequently use the following lemma to calculate $\bar{\kappa}$.
Lemma. Let $\pi: \tilde{\boldsymbol{P}}^{2} \rightarrow \boldsymbol{P}^{2}, H$ and $E_{i}$ be as above. Then we have for any $N \in N, n_{i} \in N \cup\{0\}$ the following:

$$
\operatorname{dim} H^{0}\left(\tilde{\boldsymbol{P}}^{2}, \mathcal{O}\left(N H-\sum_{i=1}^{t} n_{i} E_{i}\right)\right) \geqslant \frac{1}{2}(N+1)(N+2)-\sum_{i=1}^{t} \frac{1}{2} n_{i}\left(n_{i}+1\right)
$$

