50. Nonlinear Parabolic Variational Inequalities with Time-dependent Constraints

By Nobuyuki KENMOCHI

Department of Mathematics, Faculty of Education, Chiba University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1977)

Let *H* be a (real) Hilbert space with the inner product $(\cdot, \cdot)_H$ and norm $\|\cdot\|_H$ in *H*, and *X* a uniformly convex Banach space with the strictly convex dual *X*^{*}, natural pairing $(\cdot, \cdot)_X : X^* \times X \to R^1$ and with norm $\|\cdot\|_X$ in *X*. Suppose that *X* is a dense subspace of *H* and the natural injection from *X* into *H* is continuous. Then, identifying *H* with its dual in terms of the inner product $(\cdot, \cdot)_H$, we have the relation $X \subset H \subset X^*$ where *H* is dense in X^* . Let $0 < T < \infty$ and $2 \le p < \infty$ with 1/p+1/p'=1, and put $\mathcal{H}=L^2(0,T;H)$ and $\mathcal{X}=L^p(0,T;X)$ with $\mathcal{X}^*=L^{p'} \cdot (0,T;X^*)$; the natural pairing between \mathcal{X}^* and \mathcal{X} is denoted by $(\cdot, \cdot)_{\mathcal{X}}$ as well.

We are given a family $\{K(t); 0 \leq t \leq T\}$ of closed convex subsets of X satisfying that

(KI) for each $r \ge 0$ there are real-valued functions $\alpha_r \in W^{1,2}(0,T)$ and $\beta_r \in W^{1,1}(0,T)$ with the following property: for each $s, t \in [0,T]$ with $s \le t$ and $z \in K(s)$ with $||z||_H \le r$ there exists $z_1 \in K(t)$ such that

 $\|z_1 - z\|_H \leq |\alpha_r(t) - \alpha_r(s)|(1 + \|z\|_X^{p/2})$

and

 $||z_1||_X^p - ||z||_X^p \leq |\beta_r(t) - \beta_r(s)|(1+||z||_X^p).$

We put K_H =the closure of K(0) in H and $\mathcal{K} = \{v \in \mathcal{X}; v(t) \in K(t)$ for a.e. $t \in [0, T]\}$.

We are also given a family $\{A(t); 0 \leq t \leq T\}$ of (nonlinear) operators from D(A(t)) = X into X^* such that

(AI) \mathcal{A} defined by $[\mathcal{A}v](t) = A(t)v(t)$ is an operator from $D(\mathcal{A}) = \mathcal{X}$ into \mathcal{X}^* and maps bounded subsets of \mathcal{X} into bounded subsets of \mathcal{X}^* ;

(AII) for each $h \in \mathcal{X}$ there are a positive number c_0 and a function $c_1 \in L^1(0, T)$ satisfying

 $(A(t)z, z-h(t))_X \ge c_0[z]_X^p - c_1(t)$ a.e. on [0, T]for all $z \in X$, where $[\cdot]_X$ is a seminorm on X such that $[\cdot]_X + \|\cdot\|_H$ gives a norm on X equivalent to $\|\cdot\|_X$.

With the above notation, given $f \in \mathcal{X}^*$ and $u_0 \in K_H$, our problem $(V_s; f, u_0)$ is to find a function $u \in \mathcal{K}$ such that

(i) $u'(=du/dt) \in \mathcal{X}^*$ and $(u' + \mathcal{A}u - f, u - v)_{\mathcal{X}} \leq 0$ for all $v \in \mathcal{K}$;

(ii) $u(0) = u_0$ (note that $u \in C([0, T]; H)$ if $u \in \mathcal{K}$ and $u' \in \mathcal{K}^*$).