42. Studies on Holonomic Quantum Fields. III

By Mikio Sato, Tetsuji Miwa, and Michio Jimbo
Research Institute of Mathematical Sciences, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1977)

In this note we report along with [1] the work presented in [2]. Further results along the present line will be given in subsequent papers.

We follow the same notations as in [1] and [3] unless otherwise stated. In this article, along with the 2 -dimensional space-time ($=$ Minkowski 2 -space) and its complexification, to be denoted by $X^{\text {min }}$ and X^{c} respectively, we also deal with the Euclidean 2-space $X^{\text {Euc }}$ consisting of complex Minkowski 2-vectors $x \in X^{c}$ such that $x^{0}\left(=-i x^{2}\right) \in i \boldsymbol{R}$ and $x^{1} \in \boldsymbol{R}$, i.e. such that $\mp x^{\mp}\left(=\left(\mp x^{0}+x^{1}\right) / 2\right)$ are complex conjugate to each other; we have $z=-x^{-}, \bar{z}=x^{+}, \partial_{z}=\partial / \partial z$ and $\partial_{z}=\partial / \partial \bar{z}$.

1. Let W be an orthogonal vector space, and $W=V^{\dagger} \oplus V$ be its decomposition into two holonomic subspaces with basis (ψ_{μ}^{\dagger}) and (ψ_{μ}) as in §2 [3]. $V\left(r e s p . V^{\dagger}\right)$ generates maximal left (resp. right) ideal $A(W) V$ (resp. $V^{\dagger} A(W)$) of the Clifford algebra $A(W)$. The quotient modules $A(W) / A(W) V$ and $A(W) / V^{\dagger} A(W)$ are generated by the residue class of 1 modulo $A(W) V$ resp. $V^{\dagger} A(W)$ (which we shall denote by |vac \rangle and $\langle\mathrm{vac}|$ respectively after physicists' notation) and coincide with $A\left(V^{\dagger}\right)$ $|\mathrm{vac}\rangle$ and $\langle\mathrm{vac}| A(V)$ since we have $V|\mathrm{vac}\rangle=0$ and $\langle\mathrm{vac}| V^{\dagger}=0$. Otherwise stated, they are respectively spanned by elements of the form $\left|\nu_{n}, \cdots, \nu_{1}\right\rangle \underset{\overline{\text { def }}}{ } \psi_{\nu_{n}}^{\dagger} \cdots \psi_{\nu_{1}}^{\dagger}|\mathrm{vac}\rangle$ and $\left\langle\nu_{1}, \cdots, \nu_{n}\right|=\overline{\overline{\text { def }}}\langle\mathrm{vac}| \psi_{\nu_{1}} \cdots \psi_{\nu_{n}}, n=0,1,2$, \cdots, and indeed these elements constitute mutually dual basis of both spaces: $\left\langle\mu_{1}, \cdots, \mu_{m} \mid \nu_{n}, \cdots, \nu_{1}\right\rangle=0$ if $m \neq n$, $=\operatorname{det}\left(\delta_{\mu_{i \nu}}\right)$ if $m=n$.

Let g be an element of the Clifford group $G(W)$. The rotation in W induced by $g, T_{g}: w \mapsto g w g^{-1}$, is even or odd (i.e. $\operatorname{det} T_{g}=+1$ or -1) according as corank $T_{4}=$ even or odd; in particular for a generic even/odd $g \in G(W)$ we have corank $T_{4}=0 / 1$ and expression (3)/(4) in [3] for $N(g)$. An element $w \in W$ itself belongs to $G(W)$ if and only if $\langle w, w\rangle \neq 0$, in which case we have $w g \in G(W)$. First consider an even generic g, so that we have, with the abbreviation $\langle g\rangle_{\overline{\text { def }}}\langle\mathrm{vac}| g|\mathrm{vac}\rangle$,

$$
\begin{gather*}
N(g)=\langle g\rangle e^{L}, \quad L=\frac{1}{2}\left(\psi^{\dagger} \psi\right)\left(\begin{array}{cc}
S_{1}-1 & S_{2} \\
S_{3} & S_{4}-1
\end{array}\right)\binom{{ }^{t} \psi}{-{ }^{t} \psi^{t}} \tag{21}\\
{ }^{t} S_{1}=S_{4}, \quad{ }^{t} S_{2}=-S_{2}, \quad{ }^{t} S_{3}=-S_{3}
\end{gather*}
$$

where $S_{g}=\left(\begin{array}{ll}S_{1} & S_{2} \\ S_{3} & S_{4}\end{array}\right)$ is related to $T_{g}=\left(\begin{array}{ll}T_{1} & T_{2} \\ T_{3} & T_{4}\end{array}\right)$ through the reciprocal formulas

