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In his famous paper on the theory of invariants, A. Hurwitz® introduced
the notion of invariant measure of group manifold. He gave an explicit expres-
sion for Haar measure of unitary unimodular groups and orthogonal groups by
means of generalized polar coordinates. Afterwards H. Weyl® obtained another
expression. I will obtain other expressions for unitary, unitary symplectic, and
orthogonal groups, using the Cayley’s parametrization. Concerning unitary
groups we shall prove the following:

Theorem 1. The infinitesimal volume element dQ of Haar measure of
unitary group of n-th order is given by the following formula

dQ=\|E,+H|"dh
where I is the Cayley's parameter of unitary matriz
U=(E,+iH)(E,—iH)™"

and Hermitian, so that

fi’= H= (hae) =(au + iba), (aw =iy bpi= — D)
and dh is the product of all differentials of n parameters,
dh =daydas. ..du, Do dbp 1 «
Proof. Let U be an unitary matrix of n-th order, which is represented by
Cayley’s parameters as follows:
U=(E,+iH)(E,—iH)™!
where H is a Hermitian matrix. We form the differential of U
dU={E+i(H+dH)} {E—i(H+dM)}"'+(E+iH)(E—iH)™,
then we get, by left multiplication of /—¢( H+d H) and right multiplication of
E—:H,
{E—i(H+dH)}dU(E—H)
={E+i(H+dH)}(E—iH)— {E—i(H+dH)}(E+iH)
=2id H.

If we neglect the terms of 2-nd order, we obtain:
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