(8) 4 [Vol. 26,

47. Brownian Motions in a Lie Group.

By Kiyosi Itô.

Mathematical Institute, Nagoya University. (Comm. by T. TAKAGI, M.J.A., Oct. 12, 1950.)

The notion of Brownian motions has been introduced by N. Wiener [1] [2]¹⁾ in the case of the real number space (or more generally the n-space) and by P. Lévy [3] in the case of the circle. We shall here extend this notion in the case of a general Lie group.²⁾

- § 1. Definition and fundamental theorems. Let G be an n-dimensional Lie group. A random process $\pi(t)$ in G is called to be a right (left) invariant Brownian motion in G, if it satisfies the following five conditions M, C, T, S and C^* .
- M. $\pi(t)$ is a simple Markoff process; we denote the transition probability law of $\pi(t)$ with F(t, p, s, E) i.e.

$$F(t, p, s, E) = P_r \{ \pi(s) \in E / \pi(t) = p \}$$
.

C. Kolmogoroff-Feller's continuity condition [4] [5]. For any neighbourhood U of p it holds that

$$\lim_{s \to t+0} \frac{1}{s-t} F(t, p, s, G-U) = 0$$

and the following limits exist $(1 \le i, j \le n)$

$$a^{i}(t, p) \equiv \lim_{s \to i+0} \frac{1}{s-t} \int_{\mathcal{U}} (x^{i} - x_{0}^{i}) F(t, x_{0}, s, dx),$$
 $B^{ij}(t, p) \equiv \lim_{s \to i+0} \frac{1}{s-t} \int_{\mathcal{U}} (x^{i} - x_{0}^{i}) (x^{j} - x_{0}^{j}) F(t, x_{0}, s, dx),$

where (x^i) is a local coordinate defined on U and (x_0^i) is the coordinate of p.

- T. temporal homogeneity. $F(t, p, s, E) = F(t+\tau, p, s+\tau, E)$.
- S. spatial homogeneity.

right invariance F(t, p, s, E) = F(t, pr, s, Er). (left invariance F(t, p, s, E) = F(t, lp, s, l E).)

C* continuity. Almost all sample motions³⁾ are continuous.

¹⁾ The numbers in [] correspond to those in the the references at the end of this paper.

²⁾ Prof. K. Yosida has obtained a similar result in making use of his operatortheoretical method. See the preceding article.

³⁾ In the analytical theory of probability a random motion is represented by a motion depending on a probability parameter. Any motion for each parameter value is called to be a sample motion.