# 51. On the Metrization and the Completion of a Space with Respect to a Uniformity. 

By Jingoro Suzuki.

(Comm. by K. Kunugi, m.J.A., May 16, 1951.)
We first recall some definitions. ${ }^{1)}$ A collection $\left\{\mathfrak{U}_{\alpha} \mid \alpha \in \Omega\right\}$ of open coverings of a topological space $R$ is called a uniformity. If $\left\{\mathfrak{u}_{\alpha} \mid \alpha \in \Omega\right\}$ satisfies the condition :

For any $\alpha, \beta \in \Omega$ there exists $\gamma \in \Omega$ such that $\mathfrak{u}_{\gamma}$ is a refinement of $\mathfrak{u}_{\alpha}$ and $\mathfrak{u}_{\beta},\left\{\mathfrak{u}_{\alpha}\right\}$ is called a T-uniformity.

If $\left\{\mathfrak{U}_{\alpha} \mid \alpha \in \Omega\right\}$ satisfies the condition:
For any $\alpha \in \Omega$ there exists $\lambda(\alpha) \in \Omega$ such that for each set $U_{\lambda}(\alpha) \in \mathfrak{H}_{\lambda}(\alpha)$ we can determine a set $U_{\alpha}$ of $\mathfrak{u}_{\alpha}$ and $\delta=\delta\left(\alpha, U_{\lambda(\alpha)}\right) \in \Omega$ so that $S\left(U_{\lambda(\alpha)}, \mathfrak{H}_{\delta}\right) \subset U_{\alpha}$, the uniformity $\left\{\mathfrak{u}_{\alpha}\right\}$ is called regular.

In § 1 we shall prove
Theorem 1. If a countable number of open coverings $\left\{\mathfrak{H}_{n} \mid n=\right.$ $1,2, \cdots\}$ of a $\mathrm{T}_{1}$-space $R$ forms a regular T-uniformity agreeing with the topology, then $R$ is metrizable.

The simple extension $R^{*}$ of a space $R$ with respect to a uniformity $\left\{\mathfrak{U}_{\alpha}\right\}$ is not always complete. In $\S 2$ we shall show that if we understand the notion of a Cauchy family in a more restricted sense, then the simple extension $R^{+}$of $R$ in this restricted sense is complete if $\left\{\mathfrak{u}_{\alpha}\right\}$ agrees with the topology of $R$.

I express my sincere thanks to Prof. K. Morita for his many valuable suggestions and advices.
$\S 1$. Theorem 1 will be established by virtue of a theorem of A.H. Frink, ${ }^{2}$ ) if the following three lemmas are proved.

Lemma 1. Under the assumption of the theorem there exists a uniformity $\left\{\mathfrak{B}_{n} \mid n=1,2, \cdots\right\}$ such that $\left\{\mathfrak{B}_{n}\right\}$ is equivalent to $\left\{\mathfrak{U}_{n}\right\}$ and $\mathfrak{B}_{1}>\mathfrak{B}_{2}>\cdots>\mathfrak{B}_{n}>\cdots$.

Proof. We put $\mathfrak{u}_{1}=\mathfrak{B}_{1}$. Next we select $\mathfrak{u}_{\beta 2}$ such that $\mathfrak{H}_{\lambda(1)}, \mathfrak{u}_{2}$ $>\mathfrak{l}_{\beta s}$ and put $\mathfrak{H}_{\beta 2}=\mathfrak{B}_{\Omega}$. Now let us assume that $\mathfrak{B}_{i}$ are obtained for $i \leqq n$. We take $\mathfrak{u}_{\beta n+1}$ such that $\mathfrak{u}_{\lambda\left(\beta_{n}\right)}, \mathfrak{u}_{n+1}>\mathfrak{u}_{\mathfrak{p} n+1}$ and put $\mathfrak{U}_{\beta n+1}=\mathfrak{B}_{n+1}$. Then $\left\{\mathfrak{B}_{n} \mid n=1,2, \cdots\right\}$ satisfies clearly the conditions of Lemma 1.

Lemma 2. For any point $p$ of the space $R$ and any index $n$, there exists an index $m_{0}$ such that

[^0]
[^0]:    1) K. Morita: On the simple extension of a space with respect to a uniformity. I. Proc. Japan Acad. 27 No. 2, (1951).
    2) A. H. Frink: Distance functions and the metrization problem. Bull. Amer. Math. Soc., vol. XLIII (1937), Theorem 4, p. 141.
