26. Probability-theoretic Investigations on Inheritance. VIII $_{2}$. Non-Paternity Problems.

By Yûsaku Komatu.
Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University.
(Comm. by T. Furuhata, m.j.a., Feb. 12, 1952.)

2. General formulae on probabilities of proving non-paternity. We now enter into our main discourse. Let us consider, as usual, an inherited character consisting of m allelomorphic genes $A_{i}(i=1$, \ldots, m) with an equilibrium distribution given by (1.1). Though the case of mixed mother-child combination is rather general, we first treat, as a model, that of pure one; the former will be discussed in a subsequent section.

In general, we denote by

$$
\begin{equation*}
V(i j ; h k) \tag{2.1}
\end{equation*}
$$

the probability of proving non-paternity of a putative father, chosen at random with respect to type, against a given pair of a mother $A_{i j}$ and her child $A_{k k}$. Among such quantities, only those are significant in which h or k coincides with at least one of i and j; otherwise, they may be regarded, according to impossibility of motherchild combinations, as to be equal to unity, but such a convention will become really a matter of indifference in the following lines. Let us again, as in (1.1) of IV, denote by $\pi(i j ; h k)$ the probability of appearing of such a mother-child combination. The probability of the composed event that such a combination arises and then the proof of non-paternity can be established, is thus given by the product

$$
\begin{equation*}
P(i j ; h k)=\pi(i j ; h k) V(i j ; h k) . \tag{2.2}
\end{equation*}
$$

It vanishes unless h or k coincides with at least one of i and j, regardless of the determination of value of (2.1), since then $\pi(i j ; h k)$ so does.

If we sum up the probabilities $P(i j ; h k)$ over all possible types $A_{k \varepsilon}$ of children, then we get the sub-probability of proving nonpaternity against the type $A_{i j}$ of mother, which will be denoted by

$$
\begin{equation*}
P(i j)=\sum_{h, k} P(i j ; h k) . \tag{2.3}
\end{equation*}
$$

The probability of proving non-paternity against a fixed mother of type $A_{i j}$ is then given by

$$
\begin{equation*}
P(i j) / \bar{A}_{i j} . \tag{2.4}
\end{equation*}
$$

