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In this Note, we shall discuss the relation between Lebesgue
property and uniformly continuity in a uniform space.*) The
theorems to be proved are generalisations of some results by A. A.
Monteiro and M. M. Peixoto (3).

Theorem 1. If a uniform space E is normal and every bounded
continuous function is uniformly continuous, then any finite covering

of E has the Lebesgue property.
Proof. Let F, F be two closed sets such ,ha F F_=0. By

a theorem of Urysohn, we can find a continuous function f(x) on
the uniform space E such that
1 o <_ f(x) <__ 1

(2) f(x)=0
and

f(x)= 1 for x e F.
Sinee the unetion f(x) is uniform continuous, or a given

positive number less than 1, there is a surrounding V such that
V(a) x, y implies
( a ) if(x)- f(y) < .
Suppose that V(F), Fz O, then, for x V(F)F., y F., (x, y) V,
and xF., and hence [f(x)-f(y)[<s by (4). From (2) and (3)
If(x)- f(y) I= 1, which is a contradiction. Therefore any binary
covering of E has the property of Lebesgue, and since E is normal,
each finite covering of E has the Lebesgue property. Q.E.D.

Conversely, we shall prove the following
Theorem 2. If any covering of a uniform space E has the Lebes-

gue property, then any continuous function on E is uniformly continuous.
Proof. Let f(x) be a continuous function on E. To prove that

f(x) is uniformly continuous, let O=f-(I), where I is any open
interval with the length . [0} is an open covering of E. Since
E has the Lebesgue property, there is a surrounding V such that
V(a) O for some index a depending on a. Hence V(a) x, y implies

f(x)--.f(y) If(x)-- f(a) + If(a)-- f(y) < 2.
This shows that f(x) is uniformly continuous.

For the definitions and properties of Lebesgue property in a uniform space,
see K. Isdki (2). For the definition of uniformly continuity, see N. Bourbaki (1) or
G. N(ibeling (4).


