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Evans’s Theorem on Abstract Riemann Surfaces
with Null.Boundaries. I

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1956)

G. C. Evans) proved the following
Evans’s theorem. Let F be a closed set of capacity zero in the

3-dimensional euclidean space (or z-pane). Then there exists a positive
unit-mass-distribution on F such that the potential engendered by this
distribution has limit at every point of F.

Let R* be a null-boundary Riemann surface and let [R} (n=0,
1, 2,...) be its exhaustion with compact relative boundaries [R}.
Put R=R*-Ro. After R. S. Martin,) we introduce ideal boundary
points as follows. Let [p} be a sequence of points of R ending to
the ideal boundary of R and let [G(z, p,)} be Green’s function of R
with pole a p. Let [G(z, p;)} be a subsequence of [G(z, p)} which
converges o a function G(z, p) uniformly in R. We say that [p,.;}
determines a Martin’s poin p and we make G(z, p)correspond to p.
Furthermore Martin defined the distance between two points p and
p of R or of the boundary by

a(p, p)= sup G(z, p) V(z, p)
-,o 1 + G(z, p,) + G(z, p)

It is clear tha Martin’s poin p coincides with an ordinary point

G(z,p,)when p e R and ha if p p, G(z, p) uniformly in R. In
%he ollowing, we denote by R ) the sum of R and the set B of all
ideal boundary points of Martin. Let p be a point o R and let V(p)
be %he domain of R such that e[G(z, p)m]. Then

Lemma 1. f G(z, p).&_2: ) m O.

Proof. Let p=limp: peB, peR. Then D G(z,p)J-2m
and
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8) In this paper means "with respect to Martin’s metric ".
4) The topology induced by this metric restricted in R is homeomorphic to the

original topology and it is clear that B and are closed and compact.
5) In this article, we denote by A the relative boundary of A.


