Evans's Theorem on Abstract Riemann Surfaces with Null-Boundaries. I

By Zenjiro KURAMOCHI

Mathematical Institute, Osaka University (Comm. by K. Kunugi, M.J.A., Jan. 12, 1956)

G. C. Evans¹⁾ proved the following

Evans's theorem. Let F be a closed set of capacity zero in the 3-dimensional euclidean space (or z-plane). Then there exists a positive unit-mass-distribution on F such that the potential engendered by this distribution has limit ∞ at every point of F.

Let R^* be a null-boundary Riemann surface and let $\{R_n\}$ (n=0, $1, 2, \cdots$) be its exhaustion with compact relative boundaries $\{\partial R_n\}$. Put $R=R^*-R_0$. After R. S. Martin, we introduce ideal boundary points as follows. Let $\{p_i\}$ be a sequence of points of R tending to the ideal boundary of R and let $\{G(z, p_i)\}\$ be Green's function of R with pole at p_i . Let $\{G(z, p_i)\}\$ be a subsequence of $\{G(z, p_i)\}\$ which converges to a function G(z, p) uniformly in R. We say that $\{p_{i,j}\}$ determines a Martin's point p and we make G(z, p) correspond to p. Furthermore Martin defined the distance between two points p_1 and

$$p_2$$
 of R or of the boundary by
$$\delta(p_1,\,p_2) = \sup_{z\in R_1-R_0} \left| \frac{G(z,\,p_1)}{1+G(z,\,p_1)} - \frac{G(z,\,p_2)}{1+G(z,\,p_2)} \right| \,.$$

It is clear that Martin's point p coincides with an ordinary point when $p \in R$ and that if $p_i \stackrel{\mathfrak{M}}{\to} p_i^{\mathfrak{Z}}$, $G(z, p_i) \to G(z, p)$ uniformly in R. In the following, we denote by $\overline{R}^{(4)}$ the sum of R and the set B of all ideal boundary points of Martin. Let p be a point of \overline{R} and let $V_m(p)$ be the domain of R such that $\varepsilon \lceil G(z, p) \ge m \rceil$. Then

Lemma 1.
$$\int\limits_{\substack{\partial V_m(p)\\ \mathfrak{M}\\ \mathfrak{M}\\ \mathfrak{p}}} \frac{\partial G(z,p)}{\partial n} ds = 2\pi z^{5} \qquad m \geq 0.$$
 Proof. Let $p = \lim_{i} p_i$: $p \in B$, $p_i \in R$. Then $D_{R-V_m(p_i)}[G(z,p_i)] = 2\pi m$

and

¹⁾ G. C. Evans: Potential and positively infinite singularities of harmonic functions, Monatschefte Math. U. Phys., 43 (1936).

²⁾ R. S. Martin: Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941).

³⁾ In this paper m means "with respect to Martin's metric".

⁴⁾ The topology induced by this metric restricted in R is homeomorphic to the original topology and it is clear that B and \overline{R} are closed and compact.

⁵⁾ In this article, we denote by ∂A the relative boundary of A.