105. Relations among Topologies on Riemann Surfaces. IV

By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaido University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

Example 4. Let \Re be a circle |z+1| < 1. Let R_n be a domain such that $R_n: \frac{1}{2^n} \ge |z| \ge \frac{1}{2^{n+1}}$, $|\arg z| \le \frac{\pi}{16}$ and put $\sum_{n=1}^{\infty} R_n = R$ and $D = \Re - R$. Domain \mathfrak{D} . Let Λ_n and Γ_n be domains as follows:

$$egin{aligned} &\Lambda_n\!:\!rac{1}{2^{n+1}}\!+\!a_n\!>\!|z|\!>\!rac{1}{2^n} \ ext{ and } a_n\!<\!rac{1}{3\! imes\!2^{n+1}}\!\!, \ |rg\,z|\!<\!rac{\pi}{16}, \ &\Gamma_n\!:\!rac{1}{2}\!\left(\!rac{1}{2^n}\!+\!rac{1}{2^{n+1}}\!
ight)\!\!\geq\!|z|\!\geq\!rac{1}{2}\!\left(\!rac{1}{2^{n+1}}\!+\!rac{1}{2^{n+2}}\!
ight)\!\!, \ |rg\,z|\!\leq\!rac{\pi}{8}, \end{aligned}$$

where a_n will be determined. Then $\Gamma_n \supset \Lambda_n$ and dist $(\partial \Gamma_n, \Lambda_n) > 0$. Let $G(z, p_0, \mathfrak{N})$ be the Green's function of \mathfrak{N} , where $p_0 = -\frac{3}{2}$. Put $M_n = \max G(z, p_0, \mathfrak{N})$ on $\partial R_n + \partial R_{n+1}$. Let $w(z, \Lambda_n, D)$ be the harmonic measure of $\Lambda_n - D$ relative to D. Now D is simply connected and dist $(\partial \Gamma_n, \Lambda_n) > 0$. Hence by Lemma 3 or 5 we can find a constant a_n such that

$$M_n w(z, \Lambda_n, D) \leq \frac{1}{4^n} G(z, p_0, D) \quad \text{on} \quad \partial \Gamma_n.$$
(15)

We suppose a_n is defined as above. Put $\mathfrak{D}=\mathfrak{R}-R+\sum_{n=1}^{\infty}\Lambda_n$. Now $M_nw(z,\Lambda_n,D)=0=\frac{1}{4^n}G(z,p_0,D)$ on $\partial D-\Gamma_n$. Hence by the maximum principle $M_nw(z,\Lambda_n,D)\leq \frac{1}{4^n}G(z,p_0,D)$ in $D-\Gamma_n$. By $M_n\geq G(z,p_0,\mathfrak{R})$ $\geq G(z,p_0,\mathfrak{D})$ on $\partial \Lambda_n$ we have $M_n\geq M_nw(z,\Lambda_n,D)+G(z,p_0,D)\geq G(z,p_0,\mathfrak{D})$

