81. On a Definition of Singular Integral Operators. I

By Hitoshi Kumano-go
Department of Mathematics, Osaka University
(Comm. by Kinjirô Kunugi, M.J.A., June 12, 1964)

Introduction. The theory of singular integral operators of A. P. Calderón and A. Zygmund [1] has been applied to the various problems in partial differential equations, since A. P. Calderón [2] succeeded in proving the general theorem for the uniqueness of solutions of the Cauchy problem by using this theory. S. Mizohata in the notes [7], [8], and [9] proved the many interesting theorems for the uniqueness by modifying the notion of singular integral operators, M. Yamaguti [12] applied these operators to the existence theorem of solutions of the Cauchy problem for hyperbolic differential equations and M. Matsumura [6] applied to the existence and non-existence theorems of local solutions of the general equations.

In the note [4] we introduced singular integral operators of class C_{m}^{m} and proved the theorems of [7] and [8] by a unified method, and also in [5] we generalized the theorem of [9] by applying the operators of this class.

In the present note we shall give a definition of singular integral operators which governs operators of class $C_{\mathfrak{m}}^{m}$, and prove that the main theorems relating to operators of [1] hold for the present operators. In this theory we do not require the homogeneity of the symbol $\sigma(H)(x, \eta)$ in η (Definition 4), but assume the analyticity in η. The technique of almost all the proofs is based on [10] and [12], and the exposition is self-contained. I thank here my colleague K . Ise for helpful discussions.

1. Definitions and lemmas. Let $x=\left(x_{1}, \cdots, x_{n}\right)$ be a point of Euclidean n-space $R_{x}^{n}, \xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$ be a point of its dual space E_{ξ}^{n} and $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ denote a real vector whose elements are nonnegative integers.

We shall use the notations:

$$
\begin{aligned}
& \alpha!=\alpha_{1}!\cdots \alpha_{n}!,|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}, \\
& D_{x}=\left(D_{x_{1}}, \cdots, D_{x_{n}}\right)=\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}\right), x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, D_{\xi}=(\cdots, \text { etc. }
\end{aligned}
$$

The terminology employed is that of L. Schwarz [11].
The Fourier transform $\mathfrak{F}[u](\xi)=\widehat{u}(\xi)$ of a function $u \in L_{x}^{2}$ is defined by

$$
\tilde{F}[u](\xi)=\frac{1}{\sqrt{2 \pi}} \int e^{-\sqrt{-1} x \cdot \xi} u(x) d x
$$

