151. Commuting Dilations of Self-adjoint Operators

By Tsuyoshi ANDO and Makoto TAKAGUCHI

Research Institute of Applied Electricity, Hokkaido University (Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1965)

All operators considered are bounded self-adjoint. Given an operator A on the Hilbert space \mathfrak{H} , an operator T on a superspace $\supseteq\mathfrak{H}$ is called a *dilation* of A in case Af=PTf for $f \in \mathfrak{H}$, where P is the projection onto \mathfrak{H} . A family \mathfrak{A} of operators on \mathfrak{H} is said to be of $\langle \alpha, \beta \rangle$ type in case there is a commutative family \mathfrak{B} of operators on a superspace such that spectra of every member of \mathfrak{B} are contained in the closed interval $[\alpha, \beta]$ and every member of \mathfrak{A} finds a dilation in \mathfrak{B} . In the above definition the superspace is not fixed throughout, but depends on \mathfrak{A} . In this note an intrinsic description of being of $\langle \alpha, \beta \rangle$ type is given and some of related problems are discussed.

Since under a homothety $A \rightarrow \rho A + \xi I$, *I* being the identity operator, the dilation type $\langle \alpha, \beta \rangle$ changes to $\langle \rho \alpha + \xi, \rho \beta + \xi \rangle$ or $\langle \rho \beta + \xi, \rho \alpha + \xi \rangle$ according as ρ is positive or not, most of discussions can be reduced to the cases of positive (i.e., non-negative definite) operators.

A finite family $\{A_1, \dots, A_n\}$ of positive operators is said to be γ -decomposable in case there is a finite family of positive operators, admitting possible multiplicity, such that the total sum is γI and every A_j is a sum of a suitable subfamily. The definition can be also stated in this way: there is a positive operator-valued, finitely additive measure, with total measure γI , on a Boolean algebra, whose range contains all A's. A family of positive operators is said to be γ -decomposable in case every finite subfamily is γ -decomposable.

Given a 1-decomposable family $\mathfrak{A} = \{A_{\lambda} : \lambda \in A\}$, consider the free Boolean algebra with A as the set of generators. By the 1-decomposability, for any finite subset $\{\lambda_1, \dots, \lambda_n\}$ of indices there is a normalized, positive operator valued, finitely additive measure on the subalgebra generated by $\lambda_1, \dots, \lambda_n$, which assigns each A_{λ_j} to λ_j . Since the subalgebra is homomorphic image of the whole algebra (see [2, p. 141]), the measure can be extended over the latter. Now standard arguments based on the weak compactness of the set of positive contractions show that \mathfrak{A} is contained in the range of a normalized, positive operator valued, finitely additive measure on the Boolean algebra. Then the famous theorem of Naimark ([1], [3]) guarantees that a 1-decomposable family admits a commutative family of dilations, consisting of projections, so that it is of $\langle 0, 1 \rangle$ type.