28. Axiom Systems of Aristotle Traditional Logic

By Kiyoshi Iséki

(Comm. by Kinjirô Kunugi, M.J.A., Feb. 13, 1967)

In this paper, we shall consider axiom systems of Aristotle traditional logic. Some axiom systems are obtained by J. Lukasiewicz ([3], [4]), I. Bocheński [1] and N. Kretzmann [2]. We shall give a method to find axiom systems. The method given below is useful for the purpose, and all axiom systems are found by our method.

As well known (see A. N. Prior [5]), in the Aristotle traditional logic, there are four types of categorical propositions, a and b being terms:

- 1) Every a is b.
- 2) At least one a is b.
- 3) At least one a is not b.
- 4) No a is b.

These propositions are denoted by Aab, Iab, Oab, Eab respectively. Let N be the negation functor, then Eab=NIab, Oab=NAab. By X, Y, Z, we denote the term functors A, I, O, E, then there are two different kinds of moods: immediate inference and syllogism. Moreover, the mood of immediate inference is divided into two types: CXabYab, CXabYba, where C is the implication functor. These are denoted by XY_1 , XY_2 respectively. On the syllogism, we have four types of moods:

- I) CKXabYcaZcb,
- II) CKXabYcbZca,
- III) CKXabYacZcb,
- IV) CKXabYbcZca,

where K is the conjunction functor. These moods are denoted by XYZ_i (i=1, 2, 3, 4) respectively.

In these symbols, the Lukasiewicz axiom system is written in the form of

- L1) Aaa,
- L2) Iaa,
- L3) AAA_1 ,
- L4) AII_3 .

Assuming some theses of propositional calculus, we have II_1 , II_2 , EE_1 , EE_2 , AI_1 , AI_2 , EO_1 , EO_2 (see J. Lukasiewicz [3]).

From theses of the classical propositional calculus, we have the following deduction rules: