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In the paper [1], we defined a binary relation 06, called a
paraproximity, for a pair of subsets of a point set B. We there
proved that a paraproximity yields a completely normal space ([1]
Theorem 1). Further we showed that, for a pair of subsets A and
B of a paraproximity space R, (4, B)ecd implies ANB=@ ([1]
Theorem 2). In the present paper we show that the converse of
Theorem 2 holds. Hence a paraproximity structure which is com-
patible with the topology is uniquely determined. The remaining
parts of this paper are devoted to the study of the neighborhood.

First we restate the definition of a paraproximity. By a
paraproximity on a set R we mean a binary relation 6 for pairs of
subsets of R satisfying the following axioms:

Axiom (1). For every ACR, (A, @)¢d, and (0, A)¢d. (We add
the latter condition (@, A)¢ 6 to Axiom (1) of [17.)

Axiom (2). (A,BUC)ed if and only if either (A4, B)ed or
(4, C)eo.

Axiom (3). For an arbitrary index set 4, (U;e.4,, B)ed if and
only if there exists an index p e 4 satisfying the relation (A4,, B) € é.

Axiom (4). For arbitrary two points a, be R, ({a}, {b}) € é if and
only if a=b.

Axiom (5). If (4,B)¢d and (B, A)¢d, then there exist two
disjoint subsets U and V satisfying:

(A, R—-U)¢09, (U,R—U)¢o:
(B,R—V)¢god, (V,R—V)eo.

We note that the next lemma (Steiner [3]) follows from Axiom
3).

Lemma 1. (4, B)eod if and only if ({«}, B)€ o for some x in A.

Lemma 2. If ({x}, A)ed then (4, {x}) ¢ d.

Proof. If ({x}, A)¢ o, then x¢ A by [1, Lemma 3]. Suppose
that (4, {x})ed. Then, by Lemma 1, there is a point ¢ in A such
that ({a}, {x}) € 6. From Axiom (4) follows a=a which is a contra-
diction.

1. Let R be a set with a paraproximity 6, A set BCR is
said to be a paraproximal neighborhood of a set ACR (notation:



