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1o We suppose throughout this paper that (m) tends to zero
monotonically.

J. Meder [1] (cf. S. Kaczmarz [2]) has proved the following
Theorem I. Denote by l, L, and L the first logarithmic means

of the three series

(l) EObn, amn, and
=I =I =i

respectively, where t-s+ s. + + 8 and s-a + a. + .. + an. If
ln--O(1/mn) as

and
mn-O(m/n log n) as n-

then Ln-L +o(1) as noo.
He raized the problem ([1] P 471) whether this theorem holds also

without any additional restriction or not and the problem ([1] P 4.72)
to generalize this theorem by proving it e.g. in the case of weighted
means or in the case of the NSrlund method of summation.

Let p>=0, p>0, and Pn--Pi+p:+...+pn--c as nc. The
weighted mean Wn of the first series of (1) is defined by

Wt (PlS1 + P282 +’’" + Pn8n) / Pn"
Similarly we denote by W and W the weighted means of the second
and the third series of (1).

The case p-l/n is the first logarithmic mean. About the
weighted means J. Meder and Z. Zdrojewski [3] proved the following

Theorem II. Suppose that PnO, (Pn) is convex or concave and

0<lim inf (n+ 1)pn/Plim sup (n+ 1)Pn/P< c.(2)

If
(3)
and
(4)

w-o(m) as n-.oo

Jm O(m /n) as n-c

then W-Wn+ o(1) as n-.
This theorem does not contain Theorem I as a particular case,

since the first logarithmic means do not satisfy the condition (2).
We shall prove the ollowing


