228. On a Theorem on Commutative Decompositions

By Kiyoshi Iséki

(Comm. by Kinjirô Kunugi, M. J. A., Dec. 12, 1968)

J. R. Büchi [1] introduced a useful notion called a pair of functions (f,f'). Let E, E' be sets, and let $f: 2^E \to 2^{E'}$, $f': 2^{E'} \to 2^E$ be functions. Then (f,f') is a pair of functions, if $A' \cap f(A) = \phi$ implies $f'(A') \cap A = \phi$, where $A \subset E$, $A' \subset E'$. As shown by J. R. Büchi [1], an equivalence relation or a decomposition of E is defined by a pair of functions (f,f').

Let (f, f') be a pair of functions from 2^E to 2^E . If 1) $A \subset f(A)$, 2) f(A) = f'(A), and 3) $f(f(A)) \subset f(A)$ for every $A \subset E$, then (f, f') or f is called an *equivalence relation*.

In my note [2], we discussed some classical results on mappings by the notion of pair of functions. In this Note, we shall consider Sik results on the equivalence relations [3].

Theorem. Let f, g be two equivalence relations on a set E. The following propositions are equivalent.

- 1) The composition fg is an equivalence relation.
- 2) for any subsets A, B of E, $f(A) \cap g(B) = \phi$ implies $g(A) \cap f(B) = \phi$.
- 3) for any subsets A, B of E, $f(A) \cap g(B) \neq \phi$ implies $g(A) \cap f(B) \neq \phi$.
 - 4) for any subset A of E, fg(A) = gf(A).

Proof. It is obvious that the conditions 2) and 3) are equivalent. To prove $3)\Rightarrow 4$, let $x\in fg(A)$, then

$$x \cap f(g(A)) \neq \phi$$
.

Hence $f(x) \cap g(A) \neq \phi$. From 3), we have $g(x) \cap f(A) \neq \phi$, which means $x \in gf(A)$. Therefore $fg(A) \subset gf(A)$. Similarly we have $gf(A) \subset fg(A)$.

To prove 4) \Rightarrow 3), suppose that $f(A) \cap g(B) \neq \phi$, then $A \cap fg(B) \neq \phi$. By 4), we have $A \cap gf(B) \neq \phi$, and then $g(A) \cap f(B) \neq \phi$.

Therefore 3) and 4) are equivalent.

Next we shall prove $1) \Rightarrow 2$).

Let $f(A) \cap g(B) = \phi$, then we have

$$A \cap fg(B) = \phi$$
.

Therefore $(fg)'(A) \cap B = \phi$. Since fg is the equivalence relation, (fg)' fg. Hence $fg(A) \cap B = \phi$, and then $g(A) \cap f(B) = \phi$, which shows 3).

Finally we show $4)\Rightarrow 1$). We must verify the three conditions of an equivalence relation.