41. On Axiom Systems of Ontology. II

By Shôtarô Tanaka

(Comm. by Kinjirô Kunugi, M. J. A., Feb. 12, 1971)

It is well known that Leśniewski's original system of Ontology has the form of the following single axiom [1], [2].

T. $a \in b \equiv [\exists c] \{c \in a\} \land [c] \{c \in a \supset c \in b\} \land [cd] \{c \in a \land d \in a \supset c \in d\}.$

It is mentioned that the following four theses are inferentially equivalent to {A1, A2, A3, A4} by C. Lejewski [1].

- A 1. $a \varepsilon b \supset [\exists c] \{c \varepsilon a\}$
- A 2. $(a \varepsilon b \wedge c \varepsilon a) \supset c \varepsilon b$
- A 3. $a \in b \land c \in a \land d \in a \supset c \in d$

 $c \varepsilon d$

A 4. $c \in a \land [d] \{d \in a \supset d \in b\} \land [de] \{d \in a \land e \in a \supset d \in e\} \supset a \in b$

In this paper, we shall prove that T and {A1, A2, A3, A4} are equivalent. Furthermore, we shall prove that A1 and A2 alone can serve as axiom system of Ontology.

Lemma 1. T implies A1, A2, A3 and A4.

The proof will be given in the form of suppositional proofs [1], [2].

```
T1=A1.
                                                                                                                 (T)
                            a \varepsilon b \supset [\exists c] \{c \varepsilon a\}
                            a \varepsilon b \wedge c \varepsilon a \supset c \varepsilon b
T2 = A2.
         Proof. 1 a \varepsilon b
                                                                                                                 (premise)
                            2 c \varepsilon a \supset
                                                                                                                 (T,1)
                            3 [c]\{c \in a \supset c \in b\}
                            4 c \varepsilon a \supset c \varepsilon b
                                                                                                                 (O\Pi:3)
                                   c \varepsilon b
                                                                                                                 (4, 2)
                            c \mathrel{\varepsilon} a \land [d] \{d \mathrel{\varepsilon} a \supset d \mathrel{\varepsilon} b\} \land [de] \{d \mathrel{\varepsilon} a \land e \mathrel{\varepsilon} a \supset d \mathrel{\varepsilon} e\} \supset a \mathrel{\varepsilon} b
T 3 = A 4.
         Proof.
                           1 c \varepsilon a
                                                                                                                  (premise)
                            2 [d]\{d \in a \supset d \in b\}
                            3 [de]{d \varepsilon a \land e \varepsilon a \supset d \varepsilon e} \supset
                                                                                                                  (D\Sigma:1)
                            4 [\exists c]\{c \in a\}
                                                                                                                  (T, 4, 2, 3)
                                   a \varepsilon b
                                                                                                (rule of adding definition)
                            x \in a * b \equiv x \in a \wedge b \in x
D 1.
                            a \varepsilon b \wedge c \varepsilon a \wedge d \varepsilon a \supset c \varepsilon d
T4=A3.
         Proof. 1 a \in b
                            2 c \varepsilon a
                                                                                                                  (premise)
                            3 d \varepsilon a \supset
                            4 a \in b * c
                                                                                                                  (1, 2, D1)
                                                                                                                  (3, 4, T2)
                            5 d \varepsilon b * c
```

(D1, 5)