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1. Introduction. Throughout this paper all notations and all
terminologies are the same as in [6] and [7]. Let R be a bounded
Krull prime ring with the non-empty set of minimal non-zero prime
ideals, M(p) say, and let @ be the quotient ring of R. Then R=\Rp
(P € M(p)) and each Rj is a noetherian, local, Asano order in Q. Let
F be any right additive topology. We denote by Ry the ring of quo-
tients with respect to F' (cf. § 7 of [8]). Let F and F” be right additive
topologies of integral right R-ideals. If R,=Rj., then they are said to
be equivalent.

The aim of this paper is to prove the following theorems.

Theorem A. Let P, ---,P, e M(p) and let I, be any right Rp -
ideals 1<i<k). Then there exists a unit x in Q such that xRp =1,
(1<i<k) and x € Rp, for all P, e M(p) with P,+P;.

Theorem B. Let I be any right R-ideal and let a be any regular
element in I. Then there exists an element b in I such that I*=(aR
+bR)*.

Theorem C. Let F be any right additive topology of integral
right R-ideals. Then

Q) If FNM®)=¢, then F*={I|I*=R} is a unique maximal
element in the set of right additive topologies equivalent to F, and
R;=R.

@ If FNM{)+#¢, then F*={I|\I*22Pp...Pw, where P, e F
N M(p)} is a unique maximal element in the set of right additive topolo-
gies equivalent to F. If F(p)=M(p), where F(p)=F N M(p), then Ry
=@, and if M(p) 2F(p), then Rp=("\ Rp (P € M(p)—F(p)).

2. The proofs of Theorems. (a) First we shall prove Theorem
A. To this we let F(p)={P;|1<i<k} and let I=I,N---NI,N N; Rp,
(P;e M(p)—F(»)). Then it is clear that I is a right R-ideal. By
Lemma 2.1 of [5] IRp,=I;and IR,,=Rp,, LetA=P,N-.-NP,. Then
there exists a regular element ¢ in @ such that IR,=cR, by Lemma
8.80f [6land so IRp,=cRp,(1=i<k). Ifce Rp, forall P,ec M(p)—F(p),
then c is an element satisfying the assertion. If ce Ry, for some P,

e M(p)—F(p), then there are only finitely many elements P, - -+, Py
in M(p) such that ce Rp,,, 1=<7<D. Let B=P;,,N.--NP;,;. Then
it follows that Q=1i_1f>1 (P Rg)~" .. (P, ;Rp)~™ by Proposition 1.2,



