9. Remarks on Ideals of Bounded Krull Prime Rings

By Hidetoshi Marubayashi
College of General Education, Osaka University
(Communicated by Kenjiro Shoda, M. J. A., Jan. 12, 1977)

1. Introduction. Throughout this paper all notations and all terminologies are the same as in [6] and [7]. Let R be a bounded Krull prime ring with the non-empty set of minimal non-zero prime ideals, $M(p)$ say, and let Q be the quotient ring of R. Then $R=\bigcap R_{P}$ ($P \in M(p)$) and each R_{P} is a noetherian, local, Asano order in Q. Let F be any right additive topology. We denote by R_{F} the ring of quotients with respect to F (cf. $\S 7$ of [8]). Let F and F^{\prime} be right additive topologies of integral right R-ideals. If $R_{F}=R_{F^{\prime}}$, then they are said to be equivalent.

The aim of this paper is to prove the following theorems.
Theorem A. Let $P_{1}, \cdots, P_{k} \in M(p)$ and let \bar{I}_{i} be any right $R_{P_{i}-}$ ideals $(1 \leqq i \leqq k)$. Then there exists a unit x in Q such that $x R_{P_{i}}=\bar{I}_{i}$ ($1 \leqq i \leqq k$) and $x \in R_{P_{j}}$ for all $P_{j} \in M(p)$ with $P_{j} \neq P_{i}$.

Theorem B. Let I be any right R-ideal and let a be any regular element in I. Then there exists an element b in I such that $I^{*}=(a R$ $+b R)^{*}$.

Theorem C. Let F be any right additive topology of integral right R-ideals. Then
(1) If $F \cap M(p)=\phi$, then $F^{*}=\left\{I \mid I^{*}=R\right\}$ is a unique maximal element in the set of right additive topologies equivalent to F, and $R_{F}=R$.
(2) If $F \cap M(p) \neq \phi$, then $F^{*}=\left\{I \mid I^{*} \supseteq P_{1}^{n_{1}} \cdots P_{k}^{n_{k}}\right.$, where $P_{i} \in F$ $\cap M(p)\}$ is a unique maximal element in the set of right additive topologies equivalent to F. If $F(p)=M(p)$, where $F(p)=F \cap M(p)$, then R_{F} $=Q$, and if $M(p) \supsetneq F(p)$, then $R_{F}=\bigcap R_{P}(P \in M(p)-F(p))$.
2. The proofs of Theorems. (a) First we shall prove Theorem A. To this we let $F(p)=\left\{P_{i} \mid 1 \leqq i \leqq k\right\}$ and let $I=\bar{I}_{1} \cap \cdots \cap \bar{I}_{k} \cap \cap_{j} R_{P_{j}}$ $\left(P_{j} \in M(p)-F(p)\right)$. Then it is clear that I is a right R-ideal. By Lemma 2.1 of [5] $I R_{P_{i}}=\bar{I}_{i}$ and $I R_{P_{j}}=R_{P_{j}}$. Let $A=P_{1} \cap \cdots \cap P_{k}$. Then there exists a regular element c in Q such that $I R_{A}=c R_{A}$ by Lemma 3.3 of [6] and so $I R_{P_{i}}=c R_{P_{i}}(1 \leqq i \leqq k)$. If $c \in R_{P_{j}}$ for all $P_{j} \in M(p)-F(p)$, then c is an element satisfying the assertion. If $c \notin R_{P_{j}}$ for some P_{y} $\in M(p)-F(p)$, then there are only finitely many elements P_{k+1}, \cdots, P_{k+l} in $M(p)$ such that $c \notin R_{P_{k+j}}(1 \leqq j \leqq l)$. Let $B=P_{k_{+1}} \cap \cdots \cap P_{k+l}$. Then it follows that $Q=\underline{\longrightarrow}\left(P_{k+1} R_{B}\right)^{-n_{1}} \cdots\left(P_{k+l} R_{B}\right)^{-n_{l}}$ by Proposition 1.2,

