83. On the Theory of Spectra.

By Kôsaku Yosida.
Mathematical Institute, Osaka Imperial University.
(Comm. by T. Takagi, m.i.A., Oct. 12, 1940.)

The " algebraization" of the spectral theory, inaugurated by J. von Neumann, H. Freudenthal and S. Steen, was taken up recently by S. Kakutani, F. Riesz, M. H. Stone and B. Vulich, ${ }^{1)}$ and was treated with their respective methods and results. The purpose of the present note is to give a ring-lattice-theoretic treatment of the problem, stressing the analogy to the field of real numbers. Without assuming metrical (even topological) nor divisibility axiom, a characterisation of the function ring of the Borel-measurable functions ${ }^{2}$ is obtained. Thus the results may be applied to the operator theory as well as to the theory of probability.
§1. Axioms of Pythagorean ring. A system \mathfrak{R} of elements A, B, \ldots, X, Y, Z is called a "Pythagorean ring" if it satisfies the following axioms.
(A-1) \mathfrak{R} is a commutative, associative ring with unit I, admitting the field of real numbers as coefficients (Operatoren).-The real numbers will be denoted by small greak letters.
(A-2) $\quad X^{2}=0$ implies $X=0$.
(A-3) If non-zero element X of the form $X=Y^{2}$ is called "positive" (in symbol $X>0$), then the sum of positive element and "nonnegative" element is positive, viz. $X^{2} \neq 0$ or $Y^{2} \neq 0$ implies the existence of $Z^{2} \neq 0$ such that $X^{2}+Y^{2}=Z^{2}$.
(A-4) By the semi-order relation $X>Y(X-Y>0)$, there exists, for all X, the lowest upper bound (l. u. b.) $\sup (X, 0)$ of X and 0 . We will write $\sup (X, 0)=X^{+}, \sup (-X, 0)=X^{-}$and $|X|=X^{+}+X^{-}$.
(A-5) $X^{+} \cdot X^{-}=0$ for all X.
(A-6) Monotone increasing sequence $\left\{X_{n}\right\}$ bounded from above admits the l. u. b. $\sup _{n \geq 1} X_{n}$.
(A-7) If $A>0, \quad X_{i} \geqq 0, \quad X_{i+1} \geqq X_{i}$ and $\sup _{i \geqq 1} X_{i}$ exists, then $A \cdot \sup _{i} X_{i}=\sup _{i}\left(A \cdot X_{i}\right)$.

Remark 1. The "real" character of \mathfrak{R} is expressed by the "Pythagorean axiom" (A-3) together with (A-2). (A-4) and (A-6) are latticetheoretic axioms. ${ }^{3)}$ (A-5) is equivalent to $\left|X^{2}\right|=|X|^{2}$, and (A-7) means a generalised distributive law.

[^0]2) Not necessarily bounded!
3) Concerning lattice see G. Birkhoff : Lattice Theory, New York (1940).

[^0]: 1) J. von Neumann: Rec. Math., 43 (1936), 415-484. H. Freudenthal: Proc. Akad. Amsterdam, 39 (1936), 641-651. S. Steen: Proc. London Math. Soc., 41 (1936), 361-392. S. Kakutani : Proc. 15 (1939), 121-123. F. Riesz: Ann. Math., 41 (1940), 174-206. M. H. Stone : Proc. Nat. Acad. Sci., 26 (1940), 280-283. B. Vulich : C. R. URSS, 26 (1940), 850-859. The last two papers appeared during the preparation of the present note. In the redaction, the writer is mach suggested by Steen's paper.
