280 [Vol. 18,

59. Über die Charakterisierung des allgemeinen C-Raumes, II.

Von Hidegorô NAKANO.

Mathematisches Institut, Kaiserliche Universität zu Tokyo.

(Comm. by T. TAKAGI, M.I.A., June 12, 1942.)

Wir haben in einer früheren Abhandlung¹⁾ beschrieben:

Satz. Wenn ein Modul $\mathfrak M$ in bezug auf den Körper der reellen Zahlen derart teilweisegeordnet ist:

- 1) a > c folgt aus a > b und b > c,
- 2) $a \gg a$,
- 3) für je zwei Elemente a, b gibt es $a \cup b$ und $a \cap b$,
- 4) a+c>b+c folgt aus a>b,
- 5) aus a > 0 folgt aa > 0 für jede positive Zahl a; derart normiert ist:
 - I) $||a|| \ge 0$, and ||a|| = 0 besteht nur im Falle a = 0,
 - II) $\|aa\| = \|a\| \|a\|$ für jede reelle Zahl a,
 - M) $\|(a \cup b)\| = \text{Max}(\|a\|, \|b\|),$
 - S) für jede beschränkte Menge positiver Elemente $\{a_a\}$

Obere Grenze
$$||a_a|| =$$
Untere Grenze $||b||$;

und über die Norm vollständig ist, so kann man \mathfrak{M} durch alle stetigen Funktionen $f_a(x)$ (entsprechend $a \in \mathfrak{M}$), oder durch alle, an einem bestimmten Punkt x_0 verschwindenden, stetigen Funktionen auf einem bikompakten Hausdorffschen Raum R vollständig darstellen, und sogar $\|a\| = \operatorname{Max} |f_a(x)|$.

Wir haben diesen Satz zuerst im Falle bewiesen, dass \mathfrak{M} ein vollständiges Element besitzt, und daraus den allgemeinen Fall hergeleitet²⁾. Ich habe nachher einen Irrtum im ersten Beweis gefunden. Indem wir den ersten Beweis verbessern, wollen wir hier den allgemeinen Fall unmittelbar beweisen.

Beweis. Aus M) folgt sofort: $\|(|a|)\| = \|a\|$, und $\|a\| \le \|b\|$ für $|a| \le |b|$. Nach II) besteht das Archimedessche Axiom: für a > 0 gilt immer $\lim_{\nu \to \infty} \frac{1}{\nu} a = 0$. Man kann dann $\mathfrak M$ durch Schnitte³⁾ (A, B) auf einen Modul $\mathfrak M'$ erweitern, der ausserdem der Limesbedingung genügt: für jede absteigende Folge positiver Elemente $a_1 \ge a_2 \ge \cdots$ in $\mathfrak M'$ gibt es stets das Element $a_0 = \lim_{\nu \to \infty} a_{\nu}'$ in $\mathfrak M'$, für das $a_{\nu} \ge a_0'$, und

¹⁾ H. Nakano: Über normierte teilweisegeordnete Moduln, Proc. **17** (1941), 311-317.

²⁾ H. Nakano: Über die Charakterisierung des allgemeinen C-Raumes. Proc. 17 (1941), 301-307.

³⁾ H. Nakano: Eine Spektraltheorie, Proc. Phys.-Math. Soc. Japan, **23** (1941), 485–511. Diese Abhandlung wird im folgenden mit e. S. bezeichnet.