48. Zonal Spherical Functions on the Quantum Homogeneous Space $SU_q(n+1)/SU_q(n)$

By Masatoshi NoUMI,^{*)} Hirofumi YAMADA,^{**)} and Katsuhisa MIMACHI^{***)}

(Communicated by Shokichi IYANAGA, M. J. A., June 13, 1989)

In this note, we give an explicit expression to the zonal spherical functions on the quantum homogeneous space $SU_q(n+1)/SU_q(n)$. Details of the following arguments as well as the representation theory of the quantum group $SU_q(n+1)$ will be presented in our forthcoming paper [3]. Throughout this note, we fix a non-zero real number q.

1. Following [4], we first make a brief review on the definition of the quantum groups $SL_q(n+1; C)$ and its real form $SU_q(n+1)$.

The coordinate ring $A(SL_q(n+1; C))$ of $SL_q(n+1; C)$ is the *C*-algebra $A = C[x_{ij}; 0 \le i, j \le n]$ defined by the "canonical generators" x_{ij} $(0 \le i, j \le n)$ and the following fundamental relations:

(1.1) $x_{ik}x_{jk} = qx_{jk}x_{ik}, \quad x_{ki}x_{kj} = qx_{kj}x_{ki}$ for $0 \le i < j \le n, \ 0 \le k \le n,$ (1.2) $x_{il}x_{jk} = x_{jk}x_{il}, \quad x_{ik}x_{jl} - qx_{il}x_{jk} = x_{jl}x_{ik} - q^{-1}x_{jk}x_{il}$ for $0 \le i < j \le n, \ 0 \le k < l \le n$ and (1.3) $\det_q = 1.$ The symbol \det_q stands for the quantum determinant

(1.4)
$$\det_{q} = \sum_{\sigma \in S_{n+1}} (-q)^{l(\sigma)} x_{0\sigma(0)} x_{1\sigma(1)} \cdots x_{n\sigma(n)},$$

where S_{n+1} is the permutation group of the set $\{0, 1, \dots, n\}$ and, for each $\sigma \in S_{n+1}$, $l(\sigma)$ denotes the number of pairs (i, j) with $0 \le i < j \le n$ and $\sigma(i) > \sigma(j)$. This algebra A has the structure of a Hopf algebra, endowed with the coproduct $\Delta: A \to A \otimes A$ and the counit $\varepsilon: A \to C$ satisfying

(1.5)
$$\Delta(x_{ij}) = \sum_{k=0}^{n} x_{ik} \otimes x_{kj}$$
 and $\varepsilon(x_{ij}) = \delta_{ij}$ for $0 \le i, j \le n$.

Moreover, there exists a unique conjugate linear anti-homomorphism $a \mapsto a^* : A \to A$ such that

(1.6) $x_{ji}^* = S(x_{ij})$ for $0 \le i, j \le n$ with respect to the *antipode* $S: A \to A$ of A. Together with this *-operation, the Hopf algebra $A = A(SL_q(n+1; C))$ defines the *-Hopf algebra $A(SU_q(n+1))$.

In what follows, we denote by G the quantum group $SU_q(n+1)$ and by K the quantum subgroup $SU_q(n)$ of $G=SU_q(n+1)$. Denote by y_{ij} $(0 \le i,$

^{*)} Department of Mathematics, Sophia University.

^{**)} Department of Mathematics, Tokyo Metropolitan University.

^{***)} Department of Mathematics, Nagoya University.