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The aim of this paper is to show that a bounded linear operator in the
Lebesgue spaces Li(M"; L*(M™)) with mixed norm is bounded in the space
L¥(M™*™) under a condition on (s, t), where 1/u=(m/s+n/t)/(m+n). As
applications we shall have a result on Riesz-Bochner summing operator and
on the restriction problem of Fourier transform.

1. Notations. Let (M, M, p) and (N, J, v) be o-finite measure spaces,
and (M,, M, 1) (G=0,1, - - ) be copies of (M, M, ). Letd>2and (M, T, z)
be the product measure space [[9i(M;, M, ¢;). For a subset p={p, p,,
tt Yy pm—l}c{o’ 1) R} d'—l} put

(M(p), M(p), ﬂ(p))=jfeIP(M <My 1)
Thus
dﬂ(p)(xpo’ T xpm_l):d#po(xm)' : 'dppm_l(xpm_l) and dﬂf tiu(p)xd,u(p’),
where p’ denotes the complement {0,1, -- -, d—1}\p. (N, T, 5) and (N(p),
(), v(p)) will be defined similarly.
Let 1<s, t<oco. L*(M) denotes the Lebesgue space with norm | f|,

1/s
=(j_|f I dﬂ>/ and L(L)=L'M®’); L*(M(p))) the Lebesgue space with
M

mixed norm

W loen=|[, ([, 171 au®) " dua] ™

The definition for the cases s=oco and/or t= oo will be modified obviously.

Let m and n be positive integers such that d=m+n. We define u>1
b

Y 1l/u=(m/s+n/t)/d.
For 1<s< o, ¢ will denote the conjugate exponent s/(s—1),

P denotes the family {pe{0,1, ---,d—1}; card (p)=m} if m>n and
P={0,1, ---,d—1} otherwise. Let {I,; p € P} be a family of disjoint arcs
in the unit circle of length 2z/card (P).

2. Theorems.

Lemma 1. Assume 1<s<t<oo. Let w and f be simple functionsin
(M, HM, p). Then there exist functions W*(x) and F*(x) on M such that
(i) W(=x) and F*(x) are bounded and holomorphic in |z|<1 for every

x € M, and measurable in x for every |z|<1,
(ii) W(x)=w(x) and F'(x)= f(»),
di) W eun<lwl. for zeint(,) and pe P,
and



