107. A Characterization of Chebyshev Spaces

By Kazuaki KITAHARA

The Graduate School of Science and Technology, Kobe University

(Communicated by Kôsaku YOSIDA, M. J. A., Dec. 12, 1986)

§1. Introduction. Let M be a finite dimensional linear subspace of C[a, b], the space of real valued continuous functions defined on a finite closed interval [a, b]. Then, for a function $f \in C[a, b]$, we are concerned with the approximation problem :

find $\tilde{f} \in M$ to minimize $||f - \tilde{f}||$,

where $\|\cdot\|$ denotes the uniform norm. The function $\tilde{f} \in M$ is said to be a best approximation to f from M if \tilde{f} is a solution to the above problem. For an *n*-dimensional subspace M, we put the following two subsets of $C[a, b]: U_M = \{f \mid f \text{ possesses a unique best approximation}\}$ and $A_M = \{g \mid \text{the} error function <math>e = g - \tilde{g}$ has an alternating set of (n+1) points in [a, b] for any best approximation \tilde{g} to g; i.e., there exist (n+1) distinct points $a \leq x_1$ $< \cdots < x_{n+1} \leq b$ such that $|e(x_i)| = ||e||$, $i = 1, 2, \cdots, n+1$ and $e(x_i) \cdot e(x_{i+1}) \leq 0$, $i = 1, \cdots, n\}$.

As is well known, if M is a Chebyshev space (respectively weak Chebyshev space), that is, every nonzero function in M has no more than n-1 zeros (respectively changes of sign) on [a, b], then they are of great use in this problem. Hence various properties and characterizations of these spaces have been obtained. Young [5] showed that if M is a Chebyshev space then U_M is equal to C[a, b]. Further, by the result of Haar [1], a necessary and sufficient condition that M is a Chebyshev space is that U_M coincides with C[a, b].

As a characterization of a weak Chebyshev space, Jones and Karlovitz [2] proved that M is a weak Chebyshev space if and only if U_M is included in A_M . In this paper, as the above result, we shall give a characterization of a Chebyshev space M by using an inclusion relation between U_M and A_M .

§ 2. Definitions and lemmas. In this section, we prepare several lemmas necessary for the proof of the main theorem. First we begin with some definitions.

Definition 1. For a function $f \in C[a, b]$, two zeros x_1, x_2 of f are said to be *separated* if there is an $x_0, x_1 < x_0 < x_2$, such that $f(x_0) \neq 0$.

For an *n*-dimensional subspace M of C[a, b], we define the followings.

Definition 2. (i) We call a point $x_0 \in [a, b]$ vanishing with respect to M if $g(x_0)=0$ for any $g \in M$. In case that no confusion arises, the term "with respect to M" will be omitted.

(ii) M is called *vanishing* if there exists at least one vanishing point in [a, b]. Otherwise, it is called *nonvanishing*.